• Title/Summary/Keyword: Plasma Gases

Search Result 360, Processing Time 0.026 seconds

Adhesion of Cu on Polycarbonate Modified by O2/ Ar Plasma Treatment (O2/ Ar 플라즈마 처리에 의해 개질된 폴리카보네이트 기판에서 Cu의 밀착성)

  • Park, Jun-Kyu;Kim, Dong-Won;Kim, Sang-Ho;Lee, Youn-Seoung
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.740-746
    • /
    • 2002
  • In this study, the polycarbonate surface was treated by $O_2$/ Ar gases plasma for the enhancement of adhesion with Cu electrode. From the point of view of hydrophilicity and the functionality, the micro-roughness, new functional groups and oxygen content of the polycarbonate surface were increased by the $O_2$/ Ar gases plasma treatment. The Cu films deposited on the as-received polycarbonate were easily detached while, after the$ O_2$/ Ar gases plasma treatment the adhesive Cu films on polycarbonate could be obtained. These results can be explained that the polycarbonate had a hydrophilic surface with uniform micro-roughness and new functional groups by $O_2$/ Ar gases plasma treatment. Therefore,$O_2$/ Ar gases plasma treatment is a promising method for improvement of adhesion between polycarbonate and Cu electrode.

Color Depth of Polyamide Fabrics Pretreated with Low-Temperature Plasma under Atmospheric Pressure (상압 저온 플라즈마 전처리한 폴리아미드계 직물의 색농도)

  • 이문철
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.134-138
    • /
    • 1993
  • Wool, silk and nylon 6 fabrics were treated with low-temperature plasma under atmospheric pressure of acetone/argon or helium/argon for 30 and 180 sec, and then dyed with leveling type acid dye, C.I. Acid Red 18 and milling type acid dye, C.I. Acid Blue 83. In spite of short time of the plasma treatment for thirty seconds, the color depth of wool fabrics was increased remarkably with both of the plasma gases, aceton/argon or helium/argon and with the kinds of dyes i.e., levelin type or milling type. But the atmosperic low-temperature plasmas did not increase the depth of silk and nylon 6 fabrics dyed with both of the acid dyes regardless of the teated time and plasma gases. It seems that low-temperature plasma by atmospheric-pressure discharge is effective for improvement of dyeing of wools as is the same way with the low-temperature plasma by glow discharge. The kinds of plasma gases and treated time did not influnce the depth of wool fabric pretreted with the atmosperic low-temperature plasmas.

  • PDF

Effect of Adding Hydrocarbon Gases for Reduction of NOx and SOx Using PPCP (탄화수소 가스 첨가가 PPCP 장치에 의한 NOx 및 SOx 저감에 미치는 영향)

  • 김홍석;강형수;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.73-80
    • /
    • 1999
  • To decrease NOx and SOx using PPCP(Pulse-induced Plasma Chemical Process). This study is tried to obtain the relation and the basic data under the various conditions such the initial concentrations of NOx and SOx. The additional amount of hydrocarbon gases. The concentration of oxygen and input power etc. Especially, this study is focused on the effects of the additional hydrocarbon gases on the decrease of NOx and SOx.

  • PDF

Analysis of Electron Transport Coefficients in Binary Mixtures of TEOS Gas with Kr, Xe, He and Ne Gases for Using in Plasma Assisted Thin-film Deposition

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.455-462
    • /
    • 2016
  • The electron transport coefficients in not only pure atoms and molecules but also in the binary gas mixtures are necessary, especially on understanding quantitatively plasma phenomena and ionized gases. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in binary mixtures of TEOS gas with buffer gases such as Kr, Xe, He, and Ne gases, therefore, was analyzed and calculated by a two-term approximation of the Boltzmann equation in the E/N range (ratio of the electric field E to the neutral number density N) of 0.1 - 1000 Td (1 Td = 10−17 V.cm2). These binary gas mixtures can be considered to use as the silicon sources in many industrial applications depending on mixture ratio and particular application of gas, especially on plasma assisted thin-film deposition.

A Study on the Permeation Properties of Permanent Gases and condensable Vapors through Hexamethyldisiloxane Plasma-Polymerized Membranes (Hexamethyldisiloxane 플라즈마 중합막을 통한 영구기체 및 응축성 증기의 투과특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.699-706
    • /
    • 2018
  • The permeation properties of plasma polymer membranes were studied for permanent gases such as He, $H_2$, $O_2$, $N_2$, $CH_4$ and condensable vapors such as $CO_2$, $C_2H_4$, $C_3H_8$. The plasma polymers were prepared by the discharge of microwave or radiofrequency(RF) wave. Hexamethyldisiloxane (HMDS) vapor was used as a monomer for plasma polymerization. In HMDS plasma-polymerized membranes prepared under microwave discharge, the permeability coefficient was dependent of the kinetic molecular diameter of the permeate gases. Additionally the membranes showed higher $O_2/N_2$ permselectivity compared to the plasma polymers from radiofrequency discharge. On the contrary, in the HMDS plasma-polymerized membranes prepared under radiofrequency discharge, the permeability coefficient was dependent of the critical temperature of the permeant gases. The membranes showed high selectivities of $C_2H_4$ and $C_3H_8$ over $N_2$. The permeability coefficient of plasma polymerized membranes prepared under microwave discharge was dependent of the molecular diameter of permeant gases because of high crosslinking density of the membrane. However, the crosslinking density of the plasma polymerized membranes prepared under RF discharge was lower because the energy density of RF wave is weaker than that of microwave. Hence, the permeability of RF plasma polymerized membranes became dependent of the critical temperature rather than molecular diameter of the gases.

THERMAL PLASMA DECOMPOSITION OF FLUORINATED GREENHOUSE GASES

  • Choi, Soo-Seok;Park, Dong-Wha;Watanabe, Takyuki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.21-32
    • /
    • 2012
  • Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

Characteristics of Non-Thermal Plasma Process for Air Pollution Control (대기오염 물질 저감을 위한 저온 플라즈마 반응공정의 특성)

  • 송영훈;신동남;신완호;김관태;최연석;최영석;이원남;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.247-256
    • /
    • 2000
  • Basic characteristics of non-thermal plasma process to remove C2H4 and NO have been experimentally investigated with a packed-bed type reactor and an ac power supply. The performance of the non-thermal plasma generated by ac power supply was compared with that of a wire-plate type reactor equipped with a pulsed power supply. The result shows that the non-thermal plasma can be effectively generated with an AC power supply that can be easily fabricated with conventional techniques. In order to understand the basic reaction mechanisms of the non-thermal plasma process, parametric tests for different carrier gases(air and nitrogen) and for different reaction pathways have been performed. The test results show that O3 generated by non-thermal plasma plays an dominant role to oxidize C2H4 and NO over N and O radicals when these pollutant gases are carried by dry air under room temperature condition. Experimental observations, however, indicate that N and O radicals can significantly affect on the removal process of the pollutant gases under certain conditions.

  • PDF

Decomposition Characteristics of Perfluorocompounds(PFCs) Gas through Gliding Arc Plasma with Hydrogen Gas (수소 가스를 첨가한 글라이딩 아크 플라즈마의 과불화화합물(PFCs) 가스 분해 특성)

  • Song, Chang-Ho;Park, Dong-Wha;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Perfluorocompounds (PFCs) gases were decomposed by gliding arc plasma generated by AC pulse power. $N_2$ gas of 10 LPM flow rate and $H_2$ gas of 0.5 LPM were introduced into the gliding arc plasma generated between a pair of electrodes with SUS 303 material, and the PFCs gases were injected in the plasma and thereby were decomposed. The PFCs gas-decomposition-characteristics through the gliding arc plasma were analyzed by FT-IR, where pure $N_2$ and $H_2$-added $N_2$ environment were used to generate the gliding arc plasma. The PFCs gas-decomposition-properties were changed by electric power for gliding arc plasma generation and the H2 gas addition was effective to enhance the PFCs decomposition rate.

High rate dry etching of Si in fluorine-based inductively coupled plasmas

  • Cho, Hyun;Pearton, S.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.220-225
    • /
    • 2004
  • Four different Fluorine-based gases ($SF_6/,NF_3, PF_5,\; and \; BF_3$) were examined for high rate Inductively Coupled Plasma etching of Si. Etch rates up to ~8$\mu\textrm{m}$/min were achieved with pure $SF_6$ discharges at high source power (1500 W) and pressure (35 mTorr). A direct comparison of the four feedstock gases under the same plasma conditions showed the Si etch rate to increase in the order $BF_3$ < $NF_3$< $PF_5$ < $SF_6$. This is in good correlation with the average bond energies of the gases, except for $NF_3$, which is the least strongly bound. Optical emission spectroscopy showed that the ICP source efficiently dissociated $NF_3$, but the etched Si surface morphologies were significantly worse with this gas than with the other 3 gases.

Electron collision cross sections of molecules relevant to plasma processing

  • Jo, Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.34-34
    • /
    • 2010
  • Absolute electron-impact cross sections for molecular targets including their radicals are important in developing plasma reactors and testing various plasma processing gases. However, low-energy electron collision data for these gases are sparse and only the limited cross section data are available. In this presentation, the methods and the status of measurements of, mainly, absolute elastic cross sections for electron-polyatomic molecule collisions will be discussed with recent results from Chungnam National University. Elastic cross sections are essential for the absolute scale conversion of inelastic cross sections, as well as for testing computational methods.

  • PDF