Browse > Article
http://dx.doi.org/10.5516/NET.77.2012.003

THERMAL PLASMA DECOMPOSITION OF FLUORINATED GREENHOUSE GASES  

Choi, Soo-Seok (Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology)
Park, Dong-Wha (Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), Inha University)
Watanabe, Takyuki (Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology)
Publication Information
Nuclear Engineering and Technology / v.44, no.1, 2012 , pp. 21-32 More about this Journal
Abstract
Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.
Keywords
Plasma Torch; Greenhouse Gas; Thermal Decomposition; Destruction and Removal Efficiency (DRE); Chemical Reaction; Flow Field;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. B. Chang and J. -S. Chang, "Abatement of PFCs from Semiconductor Manufacturing Processes by Nonthermal Plasma Technologies: A Critical Review", Ind. Eng. Chem. Res., vol. 45, pp. 4101-4109 (2006).   DOI   ScienceOn
2 J. W. Sun and D. W. Park, "$CF_{4}$ Decomposition by Thermal Plasma Processing", Korean J. Chem. Eng., vol. 30, pp. 476-481 (2003).   과학기술학회마을   DOI   ScienceOn
3 S. Choi, H. S. Lee, C. M. Lee, J. S. Nam, and S. H. Hong, "Comparative Study between Air and Nitrogen Thermal Plasma Process for $CF_{4}$ Decomposition", Proc. 18th Int. Symp. Plasma Chem. (ISPC18), Kyoto, Japan, Aug. 26-31, 2007.
4 S. Choi, H. S. Lee, S. Kim, S. H. Hong, and D. -W. Park, "Thermal Plasma Analysis for the Pyrolysis of PFCs on a Large Scale", J. Korean Phys. Soc., vol. 55, pp. 1819-1824 (2009).   DOI   ScienceOn
5 D. -y. Kim and D. W. Park, "Decomposition of PFCs by Steam Plasma at Atmospheric Pressure", Surface Coat. Tech., vol. 202, pp. 5280-5283 (2008).   DOI   ScienceOn
6 Narengerile, H. Saito, and T. Watanabe, "Decomposition of Tetrafluoromethane by Water Plasma Generated under Atmospheric Pressure", Thin Solid Films, vol. 518, pp. 929-935 (2009).   DOI   ScienceOn
7 P. Fauchais and A. Vardelle, "Thermal Plasmas", IEEE Tran. Plasma Sci., vol. 25, pp. 1258-1280 (1997).   DOI   ScienceOn
8 Narengerile, H. Saito, and T. Watanabe, "Decomposition Mechanism of Fluorinated Compounds in Water Plasmas Generated under Atmospheric Pressure", Plasma Chem. Plasma Process., vol. 30, pp. 813-829 (2010).   DOI   ScienceOn
9 X. P. Xu, S. Rauf, and M. J. Kushner, "Plasma Abatement of Perfluorocompounds in Inductively Coupled Plasma Reactors", J. Vac. Sci. Tech. A, vol. 18, pp. 213-231 (2000).   DOI   ScienceOn
10 T. Kuroki, J. Mine, S. Odahara, M. Okubo, T. Yamamoto, and N. Saeki, "$CF_{4}$ Decomposition of Flue Gas From Semiconductor Process Using Inductively Coupled Plasma", IEEE Trans. Ind. Appl., vol. 41, pp. 221-228 (2005).   DOI   ScienceOn
11 E. J. Tonnis, V. Vartanian, L. Beu, T. Lii, R. Jewett, and David Graves, "Evaluation of a Litmas "Blue" Point-of-Use (POU) Plasma Abatement Device for Perfluorocompound (PFC) Destruction", Technology Transfer #98123605AENG, International SEMATECH (1998).
12 J. P. Fournier and M. E. Elta, "Utilizing a Portable Cycle Purge Nitrogen Venturi for Removal of Process Gases in Semiconductor Processing gas Systems", J. Vac. Sci. Tech. A, vol. 10, pp. 3376-3377 (1992).   DOI
13 J. V. Gompel and T. Walling, "A New Way to Treat Process Exhaust to Remove $CF_{4}$", Semicon. Int., vol. 20, pp. 95-100 (1997).
14 D. R. Burgess, Jr., M. R. Zachariah, W. Tsang, and P. R. Westmoreland, "Thermochemical and Chemical Kinetic Data for Fluorinated Hydrocarbons", Prog. Energy Combust. Sci., vol. 21, pp. 453-529 (1996).   DOI
15 G. M. Bickle, T. Suzuki, and Y. Mitarai, "Catalytic Destruction of Chlorofluorocarbons and Toxic Chlorinated Hydrocarbons", Appl. Catal. B: Environ., vol. 4, pp. 141- 153 (1994).   DOI   ScienceOn
16 S. Futamura and A. Gurusamy, "Synergy of Nonthermal Plasma and Catalysts in the Decomposition of Fluorinated Hydrocarbons", J. Electrostatics, vol. 63, pp. 949-954 (2005).   DOI   ScienceOn
17 S. J. Yu and M. B. Jang, "Oxidative Conversion of PFC via Plasma Processing with Dielectric Barrier Discharges", Plasma Chem. Plasma Process., vol. 21, pp. 311-327 (2001).   DOI   ScienceOn
18 K. Urashima, K. G. Kostov, J. -S. Chang, Y. Okayasu, T. Iwaizumi, K. Yoshimura, and T. Kato, "Removal of $C_{2}F_{6}$ from a Semiconductor Process Flue Gas by a Ferroelectric Packed-Bed Barrier Discharge Reactor with an Adsorber", IEEE Tran. Ind. Appl., vol. 37, pp. 1456-1463 (2001).   DOI   ScienceOn
19 J. P. Chang and J. W. Coburn, "Plasma-Surface Interactions", J. Vac. Sci. Tech. A, vol. 21, pp. S145-S151 (2003).   DOI   ScienceOn
20 C. C. Allgood, "Fluorinated Gases for Semiconductor Manufacture: Process Advances in Chemical Vapor Deposition Chamber Cleaning", J. Fluorine Chem., vol. 122, pp. 105-112 (2003).   DOI   ScienceOn
21 J. V. Gompel, "PFCs in the Semiconductor Industry: A Primer", Semicon. Int., vol. 23, pp. 321-330 (2000).
22 R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, "Atmospheric Lifetimes of Long-Lived Halogenated Species", Science, vol. 259, pp. 194-199 (1993).   DOI
23 I. Namose, "Optimization of Gas Utilization in Plasma Processes", IEEE Tran. Semicon. Manufacturing, vol. 16, pp. 429-435 (2003).   DOI   ScienceOn
24 S. Samukawa and T. Mukai, "New Radical Control Method for High-Performance Dielectric Etching with Nonperfluorocompound Gas Chemistries in Ultrahigh- Frequency Plasma", J. Vac. Sci. Tech. A, vol. 17, pp. 2551- 2556 (1999).   DOI
25 W. -T. Tsai, H. -P. Chen, and W. -Y. Hsien, "A Review of Uses, Environmental Hazards and Recovery/Recycle Technologies of Perfluorocarbons (PFCs) Emissions from the Semiconductor Manufacturing processes", J. Loss Prevention Proc. Ind., vol. 15, pp. 65-75 (2002).   DOI   ScienceOn
26 T. Streif, G. DePinto, S. Dunnigan, and A. Atherton, "PFC Reduction through Process and Hardware Optimization", Semicon. Int., vol. 20, pp. 129-134 (1997).
27 V. Mohindra, H. Chae, H. H. Sawin, and M. T. Mocella, "Abatement of Perfluorocompounds (PFCs) in a Microwave Tubular Reactor Using $O_{2}$ as an Additive Gas", IEEE Trans. Semicond. Manuf., vol. 10, pp. 399-411 (1997).   DOI   ScienceOn
28 M. -H. Yuan, Narengerile, T. Watanabe, and C. -Y. Chang, "DC Water Plasma at Atmospheric Pressure for the Treatment of Aqueous Phenol", Environ. Sci. Tech., vol. 44, pp. 4710- 4715 (2010).   DOI   ScienceOn
29 B. A. Wofford, M. W. Jackson, C. Hartz, and J. W. Bevan, "Surface-Wave Plasma Abatement of $CHF_{3}$ and $CF_{4}$ Containing Semiconductor Process Emissions", Environ. Sci. Tech., vol. 33, pp. 1892-1897 (1999).   DOI   ScienceOn
30 J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank, D. C. Haggard, and R. L. Williamson, "Entrainment in High-Velocity, High-Temperature Plasma Jets. Part 1: Experimental Results", Int. J. Heat Mass Transfer, vol. 46, pp. 4201-4213 (2003).   DOI   ScienceOn
31 Narengerile, H. Nishioka, and T. Watanabe, "Mechanisms of Decomposition of Organic Compoundsby Water Plasmas at Atmospheric Pressure", Jpn. J. Appl. Phys., vol. 50, 08JF13 (2011).   DOI
32 Narengerile, and T. Watanabe, "Acetone Decompositionby Water PlasmasatAtmospheric Pressure", Chem. Eng. Sci., vol. 69, pp. 296-303 (2012).   DOI   ScienceOn
33 T. Li, S. Choi, T. Watanabe, T. Nakayama, and T. Tanaka, "Discharge and Optical Characteristics of Long DC Arc Plasma", Proc. The 24th Symp. Plasma Sci. Mater. (SPSM- 24), Osaka, Japan, Jul. 19-20, 2011.
34 A. Gleizes, J. J. Gonzalez, and P. Freton, "Thermal Plasma Modeling", J. Phys. D: Appl. Phys., vol. 38, pp. R153-R183 (2005).   DOI   ScienceOn
35 S. Choi, T. Li, T. Watanabe, T. Nakayama, and K. Otsuki, "Thermal Plasma Characterization on Long DC Arc Discharge for Waste Treatment", Proc. Plasma Conf. 2011 (Plasma 2011), Kanazawa, Japan, Nov. 22-25, 2011.
36 K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Enthalpy Probe Measurements and Three-Dimensional Modelling on Air Plasma Jets Generated by a Non- Transferred Plasma Torch with Hollow Electrodes", J. Phys. D: Appl. Phys., vol. 41, 065201 (2008).   DOI   ScienceOn
37 B. E. Launder and D. B. Spalding, "The Numerical Computation of Turbulent Flows", Comp. Method. Appl. Mech. Eng., vol. 31, pp. 269-289(1974).
38 A. B. Murphy, and C. J. Arundell, "Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon- Oxygen Plasmas", Plasma Chem. Plasma Process., vol. 14 pp. 451-490 (1994).   DOI   ScienceOn
39 A. B. Murphy, "Transport Coefficients of Air, Argon-Air, Nitrogen-Air, and Oxygen-Air Plasmas", Plasma Chem. Plasma Process., vol. 15, pp. 279-307 (1995).   DOI   ScienceOn
40 I. Sokolova, "High Temperature Gas and Plasma Transport Properties of $F_{4}$ and $CF_{4}$ Mixtures", Fluid Phase Equilib., vol. 174, pp. 213-220 (2000).   DOI
41 W. Han, E. M. Kennedy, S. K. Kundu, J. C. Mackie, A. A. Adesina, and B. Z. Dlugogorski, "Experimental and Chemical Kinetic Study of the Pyrolysis of Trifluoroethane and the Reaction of Trifluoromethane with Methane", J. Fluor. Chem., vol. 131, pp. 751-760 (2010).   DOI   ScienceOn
42 J. -F. Brilhac, B. Pateyron, J. -F. Coudert, P. Fauchais, and A. Bouvier, "Study of the Dynamic and Static Behavior of dc Vortex Plasma Torch: Part II: Well-Type Cathode", Plasma Chem. Plasma Proc., vol. 15, pp. 257-277 (1995).   DOI   ScienceOn
43 E. Pfender, "Plasma Jet Behavior and Modeling Associated with the Plasma Spray Process", Thin Solid Films, vol. 238, pp. 228-241 (1994).   DOI   ScienceOn
44 J. F. Coudert, M. P. Planche, and P. Fauchais, "Characterization of D. C. Plasma Torch Voltage Fluctuations", Plasma Chem. Plasma Proc., vol. 16, pp. 211S-227S (1996).   DOI
45 G. Angelinoa and C. Invernizzib, "Experimental Investigation on the Thermal Stability of Some New Zero ODP Refrigerants", Int. J. Refrig., vol. 26, pp. 51-58 (2003).   DOI   ScienceOn
46 A. McCullocha and A. A. Lindley, "Global Emissions of HFC-23 Estimated to Year 2015", Atmos. Environ., vol. 41, pp. 1560-1566 (2007).   DOI   ScienceOn
47 M. Mohanraj, S. Jayaraj, and C. Muraleedharan, "Environment Friendly Alternatives to Halogenated Refrigerants-A review", Int. J. Greenhouse Gas Control, vol. 3, pp. 108- 119 (2009).   DOI   ScienceOn
48 K. D. Kang and S. H. Hong, "Arc Plasma Jets of a Nontransferred Plasma Torch", IEEE Trans. Plasma Sci., vol. 24, pp. 89-90 (1996).   DOI   ScienceOn
49 J. M. Park, K. S. Kim, T. H. Hwang, and S. H. Hong, "Three-Dimensional Modeling of Arc Root Rotation by External Magnetic Field in Nontransferred Thermal Plasma Torches", IEEE Tran. Plasma Sci., vol. 32, pp. 479-487 (2004).   DOI   ScienceOn
50 M. Hur and S. H. Hong, "Comparative Analysis of Turbulent Effects on Thermal Plasma Characteristics inside the Plasma Torches with Rod- and Well-Type Cathodes", J. Phys. D: Appl. Phys., vol. 35, pp. 1946-1954 (2002).   DOI   ScienceOn
51 S. Choi, J. M. Park, W. T. Ju, and S. H. Hong, "Effects of Constrictor Geometry, Arc Current, and Gas Flow Rate on Thermal Plasma Characteristics in a Segmented Arc Heater", J. Therm. Sci. Tech., vol. 6, pp. 210-218 (2011).   DOI
52 K. S. Kim, J. M. Park, S. Choi, J. Kim, and S. H. Hong, "Comparative Study of Two- and Three-Dimensional Modeling on Arc Discharge Phenomena inside a Thermal Plasma Torch with Hollow Electrodes", Phys. Plasma, vol. 15, 023501 (2008).   DOI   ScienceOn
53 S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim, and S. H. Hong, "Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch, IEEE Trans. Plasma Sci., vol. 32, pp. 473-478 (2004).   DOI   ScienceOn
54 S. -H. Han, H. -W. Park, T. -H. Kim, and D. -W. Park, "Large Scale Treatment of Perfluorocompounds Using a Thermal Plasma Scrubber", Clean Tech., vol. 17, pp. 250-258 (2011).
55 S. Choi, S. H. Hong, D. -W. Park, and T. Watanabe, "Thermal Plasma Technology for Non-Degradable Greenhouse Gases Treatment", Proc. The 24th Symp. Plasma Sci. Mater. (SPSM-24), Osaka, Japan, Jul. 19-20, 2011.
56 S. Choi, K. Y. Cho, J. M. Woo, J. C. Lim, J. K. Lee, "Numerical Analysis on a Thermal Plasma Reactor for HFC-23 Treatment", Current Appl. Phys., vol. 11, pp. S94-S98 (2011).   DOI   ScienceOn
57 S. -W. Kim, H. -S. Park, and H. -J. Kim, "100 kW Steam Plasma Process for Treatment of PCBs (Polychlorinated Biphenyls) Waste", Vacuum, vol. 70, pp. 59-66 (2003).   DOI   ScienceOn
58 T. -H. Kim, S. Choi, and D. -W. Park, "Numerical Simulation on the Influence of Water Spray in Thermal Plasma Treatment of $CF_{4}$ gas", Current Appl. Phys., vol. 12, pp. 509-514 (2012).   DOI   ScienceOn
59 R. Benocci, G. Bonizzoni, and E. Sindoni, "Thermal Plasmas for Hazardous Waste Treatment", World Scientific (1995).
60 E. Pfender, "Thermal Plasma Technology: Where Do We Stand and Where Are We Going?", Plasma Chem. Plasma Proc., vol. 19, pp. 1-31 (1999).   DOI   ScienceOn
61 T. Watanabe, "Water Plasma Generation under Atmospheric Pressure for Waste Treatment", ASEAN J. Chem. Eng., vol. 5, pp. 30-34 (2005).
62 J. Heberlein, and A. B. Murphy, "Thermal plasma waste treatment", J. Phys. D: Appl. Phys., vol. 41, 053001 (2008).   DOI   ScienceOn
63 S. H. Hong, et al., "Optimal Design and Fabrication Technology of Thermal Plasma Torches for Industrial Application", Seoul National University (2005).
64 W. B. White, S. M. Johnson, G. B. Dantzig, "Chemical Equilibrium in Complex Mixtures", J. Chem. Phys., vol. 28, pp. 751-755 (1958).   DOI
65 E. Johnson, "Global Warming from HFC", Environ. Impact Assess. Rev., vol. 18, pp. 485-492 (1998).   DOI   ScienceOn
66 Y. Kim, K. T. Kim, M. S. Cha, Y. H. Song, and S. J. Kim, "$CF_{4}$ Decompositions Using Streamer- and Glow-Mode in Dielectric Barrier Discharges", IEEE Trans. Plasma Sci., vol. 33, pp. 1041-1046 (2005).   DOI
67 Y. C. Hong and H. S. Uhm, "Abatement of $CF_{4}$ by Atmospheric-Pressure Microwave Plasma Torch", Phys. Plasma, vol. 10, pp. 3410-3414 (2003).   DOI   ScienceOn