DOI QR코드

DOI QR Code

A Study on the Permeation Properties of Permanent Gases and condensable Vapors through Hexamethyldisiloxane Plasma-Polymerized Membranes

Hexamethyldisiloxane 플라즈마 중합막을 통한 영구기체 및 응축성 증기의 투과특성에 관한 연구

  • Oh, Sae-Joong (Department of Environmental and Biochemical Engineering, Sun-Moon University)
  • 오세중 (선문대학교 환경생명화학공학과)
  • Received : 2017.11.23
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

The permeation properties of plasma polymer membranes were studied for permanent gases such as He, $H_2$, $O_2$, $N_2$, $CH_4$ and condensable vapors such as $CO_2$, $C_2H_4$, $C_3H_8$. The plasma polymers were prepared by the discharge of microwave or radiofrequency(RF) wave. Hexamethyldisiloxane (HMDS) vapor was used as a monomer for plasma polymerization. In HMDS plasma-polymerized membranes prepared under microwave discharge, the permeability coefficient was dependent of the kinetic molecular diameter of the permeate gases. Additionally the membranes showed higher $O_2/N_2$ permselectivity compared to the plasma polymers from radiofrequency discharge. On the contrary, in the HMDS plasma-polymerized membranes prepared under radiofrequency discharge, the permeability coefficient was dependent of the critical temperature of the permeant gases. The membranes showed high selectivities of $C_2H_4$ and $C_3H_8$ over $N_2$. The permeability coefficient of plasma polymerized membranes prepared under microwave discharge was dependent of the molecular diameter of permeant gases because of high crosslinking density of the membrane. However, the crosslinking density of the plasma polymerized membranes prepared under RF discharge was lower because the energy density of RF wave is weaker than that of microwave. Hence, the permeability of RF plasma polymerized membranes became dependent of the critical temperature rather than molecular diameter of the gases.

플라즈마 고분자의 영구기체(He, $H_2$, $O_2$, $N_2$, $CH_4$) 및 응축성 증기($CO_2$, $C_2H_4$, $C_3H_8$)에 대한 투과 특성을 조사하였다. 플라즈마 고분자는 마이크로파 방전과 라디오파 방전을 이용하여 제조하였으며 플라즈마 중합의 단량체(monomer)로는 hexamethyldisiloxane(HMDS)을 사용하였다. 마이크로파를 이용하여 제조한 HMDS 플라즈마 고분자막의 투과도계수는 투과 기체의 분자지름에 의존하는 경향을 나타내었으며 라디오파를 이용하여 제조한 플라즈마 고분자막보다 높은 산소/질소 투과선택도를 나타내었다. 반면에 라디오파를 이용하여 제조한 HMDS 플라즈마 고분자막의 투과도계수는 투과기체의 임계온도에 의존하는 경향을 나타내었으며 질소에 대한 에틸렌 및 프로판의 투과선택도가 우수한 특성을 나타내었다. 마이크로파로 중합시킨 고분자막은 가교결합도가 높기 때문에 기체의 투과도계수가 주로 확산계수(또는 분자지름)에 의존하게 된다. 그러나 라디오파의 에너지 밀도는 마이크로파의 에너지 밀도보다 낮기 때문에 라디오파로 중합시킨 플라즈마 고분자막의 구조는 마이크로파로 중합시킨 고분자 막에 비하여 가교결합도가 떨어지게 되며 이 막을 통한 투과도계수는 분자크기 보다는 기체의 임계온도에 의존하는 경향을 나타내었다. 따라서 라디오파를 이용하여 중합시킨 HMDS 플라즈마 고분자막은 영구기체 보다는 공기 중의 유기물질을 제거하는데 보다 효과적으로 이용될 수 있을 것으로 생각된다.

Keywords

References

  1. H. Yasuda, "Plasma Polymerization", Academic Press, New York, 1985.
  2. S.J. Oh, Yuan Zeng and W.P. Zurawsky, "Permeation of Simple Gases Through Plasma Polymerized Films from Fluorine-Containing Monomers", J. Appl. Polym. Sci., 57, pp. 1277-1284, 1995. DOI: https://doi.org/10.1002/app.1995.070571103
  3. Onal-Ulusoy Baran, "Effects of Plasma- Modified Polyvinylidenefluoride and Polyethersulfone Ultrafiltration(UF) Membrane Treatments on Quality of Soybean Oil", J. Food Quality, vol. 38, no. 4, pp. 285-296, 2015. DOI: https://doi.org/10.1111/jfq.12140
  4. Jean Durand, Vincent Rouessac and Stephanie Roualdes,"Plasma Processes for Membrane Modification or Manufacture", Annales de Chimie (Cachan, France), vol. 32, no. 2, pp. 141-158, 2007. DOI: https://doi.org/10.3166/acsm.32.141-158
  5. Chi-Lan Li, Chen-Yuan Tu, N. Inagaki, Kueir-Rarn Lee and Juin-Yih Lai,"Plasma- Induced Solid-State Polymerization Modified Poly(tetrafluoroethylene) Membrane for Pervaporation Separation of Aqueous Alcohol Mixtures", J. Appl. Polym. Sci., vol. 102, no. 1, pp. 909-919, 2006. DOI: https://doi.org/10.1002/app.24384
  6. Lei Shao, Jon Sameth and May B. Haegg,"Gas Permeabilities of Poly(4- methyl- 2- pentyne) Membranes Surface Modified with Carbon Tetrachloride Plasma", Desalination, vol. 200, no. 1, pp. 1-3, 2006. DOI: https://doi.org/10.1016/j.desal.2006.03.127
  7. M. Rafik, A Mas, M-F Guimon, C. Guimon, A. Elharfi and F. Schue,"Plasma- modified Poly(vinyl alcohol) Membranes for the Dehydration of Ethanol", Polym. Int., vol. 52, no. 7, pp. 1222-1229, 2003. DOI: https://doi.org/10.1002/pi.1260
  8. Christopher L. Chapman, Dhiman Bhattacharyya, Robert C. Eberhart, Richard D. Timmons and Cheng-Jen Chuong,"Plasma Polymer Thin Film Depositions to Regulate Gas Permeability through Nanoporous Track Etched Membranes", J. Membr. Sci., vol. 318, no. 1, pp. 137-144, 2008. DOI: https://doi.org/10.1016/j.memsci.2008.02.030
  9. Herman V. Boenig,"Fundamentals of Plasma Chemistry and Technology", Technomic Publishing Co. Inc., 1988.
  10. T. Chittrakarn, Y. Tirawanichakul, S. Sirijarukul and C. Yuenyao,"Plasma Induced Graft Polymerization of Hydrophilic Monomers on Polysulfone Gas Separation Membrane Surfaces", Surface and Coatings Tech., 296, pp. 157-163, 2016. DOI: https://doi.org/10.1016/j.surfcoat.2016.04.018
  11. Chen-Yuan Tu, Chiu-Ping Chen, Yi-Chieh Wang, Chi-Lan Li, Hui-An Tsai, Kueir-Rarn Lee, and Juin-Yih Lai, "Acrylamide Plasma- induced Polymerization onto Expanded Poly(tetrafluoroethylene) Membrane for Aqueous Alcohol Mixture Vapor Permeation Separation", Polymer J., vol. 40, no. 7, pp. 1541-1549, 2004. DOI: https://doi.org/10.1016/j.eurpolymj.2004.02.004
  12. Woo-Ik Sohn, Dong-Hyun Ryu, Sae-Joong Oh and Ja-Kyung Koo,"A Study on the Development of Composite Membranes for the Separation of Organic Vapors", J. Membr. Sci., 175, pp. 163-170, 2000. DOI: https://doi.org/10.1016/S0376-7388(00)00417-8
  13. G.J. Van Amerogen,"The permeability of Different Rubbers to Gases and its Relation to Diffusivity and Solubility", J. Appl. Phys., 17, pp. 972-978, 1946. DOI: https://doi.org/10.1063/1.1707667
  14. A.S. Mitchaels and J.J. Bixler,"Solubility of Gases in Polyethylene", J. Polym. Sci., 50, pp. 393-412, 1961. DOI: https://doi.org/10.1002/pol.1961.1205015411
  15. A.S. Mitchaels and J.J. Bixler,"Flow of Gases through Polyethylene", J. Polym. Sci., 50, pp. 413-439, 1961. DOI: https://doi.org/10.1002/pol.1961.1205015412
  16. R.A. Pasternak, G.L. Burns and J. Heller," Diffusion and Solubility of Simple Gases through a Copolymer of Hexafluoropropylene and Tetrafl uoroethylene", Macromolecules, 4, pp. 470-475, 1971. DOI: https://doi.org/10.1021/ma60022a022
  17. R.A. Pasternak, M.V. Christensen and J. Jeller," Diffusion and Permeation of Oxygen, Nitrogen, Carbon Dioxide and Nitrogen Dioxide through Polytetrafl uoroethylene", Macromolecules, 3, pp. 366-371, 1970. DOI: https://doi.org/10.1021/ma60015a020