• 제목/요약/키워드: Plasma Enhanced Chemical Vapor Deposition

검색결과 613건 처리시간 0.024초

전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치 (Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes)

  • 김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

원거리 플라즈마 화학증착을 이용한 규소 박막의 결정성 (The crystallinity of silicon films deposited at low temperatures with Remote Plasma Enhanced Chemical Vapor Deposition(RPECVD))

  • 김동환;이일정;이시우
    • 한국진공학회지
    • /
    • 제4권S1호
    • /
    • pp.1-6
    • /
    • 1995
  • Polycrystalline Si films have been used in many applications such as thin film transistors(TFT), image sensors and LSI applications. In this research deposition of Si films at low temperatures with remote plasma enhanced CVD from Si2H6-SiF4-H2 on SiO2 was studied and their crystallinity was investigated. It was condluded that growth of crystalline Si films was favorable with (1) low Si2H6 flow rates, (2) moderate plasma power, (3) moderate SiF4 flow rates, (4) moderate substrate temperature, and (5) suitable method of surface cleaning.

  • PDF

27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구 (Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz)

  • 이기세;김선규;김선영;김상호;김건성;김범준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

Optical properties of amorphous $Si_xC_yN_z$ ternary thin films prepared by plasma enhanced chemical vapor deposition

  • Zhang, Z.H.;Fan, X.J.;Guo, H.X.;Zhang, W.;Zhang, C.Y.;Luo, F.Y.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.190-196
    • /
    • 1998
  • Amorphous ternary $Si_xC_yN-z$ thin films were obtained by plasma enhanced chemical vapor deposition(PECVD) using $N_2, SiH_4 \;and \;C_2H_4$ as the reaction sources. The chemical state were characterized by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FTIR). The optical properties of the thin films were investigated by UV-visible spectrophotometer and ellipsometer, and the optical band gaps of thin films were determined from corresponding transmittance spectra following Tauc equation.

  • PDF

$C_{x}F_{y}$ Polymer Film Deposition in rf and dc $C_{7}F_{16}$ Vapor Plasmas

  • Sakai, Y.;Akazawa, M.;Sakai, Yosuke;Sugawara, H.;Tabata, M.;Lungu, C.P.;Lungu, A.M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2001
  • $C_{x}F_{y}$ polymer film was deposited in rf and dc Fluorinert vapor ($C_{7}F_{16}$) plasmas. In the plasma phase, the spatial distribution of optical emission spectra and the temporal concentration of decomposed species were monitored, and kinetics of the $C_{7}F_{16}$ decomposition process was discussed. Deposition of $C_{x}F_{y}$ film has been tried on substrates of stainless steel, glass, molybdenum and silicon wafers at room temperature in the vapor pressures of 40 and 100 Pa. The films deposited in the rf plasma showed excellent electrical properties as an insulator for multi-layered interconnection of deep-submicron LSI, i.e. the low dielectric constant ∼2.0, the dielectric strength ∼2 MV/cm and the high deposition rate ∼100nm/min at 100W input power.

  • PDF

플라즈마 기상 화학 증착법을 이용한 탄소나노튜브의 선택적 수직성장 기술 (Selective Growth of Freestanding Carbon Nanotubes Using Plasma-Enhanced Chemical Vapor Deposition)

  • 방윤영;장원석
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.113-120
    • /
    • 2007
  • Chemical vapor deposition (CVD) is one of the various synthesis methods that have been employed for carbon nanotube (CNT) growth. In particular, Ren et al reported that large areas of vertically aligned multi-wall carbon nanotubes could be grown using a direct current (dc) PECVD system. The synthesis of CNT requires a metal catalyst layer, etchant gas, and a carbon source. In this work, the substrates consists of Si wafers with Ni-deposited film. Ammonia $NH_3$) and acetylene ($C_2H_2$) were used as the etchant gases and carbon source, respectively. Pretreated conditions had an influence on vertical growth and density of CNTs. And patterned growth of CNTs could be achieved by lithographical defining the Ni catalyst prior to growth. The length of single CNT was increased as niclel dot size increased, but the growth rate was reduced when nickel dot size was more than 200 nm due to the synthesis of several CNTs on single Ni dot. The morphology of the carbon nanotubes by TEM showed that vertical CNTs were multi-wall and tip-type growth mode structure in which a Ni cap was at the end of the CNT.

Understanding the Growth Kinetics of Graphene on Cu and Fe2O3 Using Inductively-Coupled Plasma Chemical Vapor Deposition

  • Van Nang, Lam;Kim, Dong-Ok;Trung, Tran Nam;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Applied Microscopy
    • /
    • 제47권1호
    • /
    • pp.13-18
    • /
    • 2017
  • High-quality graphene was synthesized on Cu foil and $Fe_2O_3$ film using $CH_4$ gas via inductively-coupled plasma chemical vapor deposition (ICPCVD). The graphene film was formed on $Fe_2O_3$ at a temperature as low as $700^{\circ}C$. Few-layer graphene was formed within a few seconds and 1 min on Cu and $Fe_2O_3$, respectively. With increasing growth time and plasma power, the graphene thickness was controllably reduced and ultimately self-limited to a single layer. Moreover, the crystal quality of graphene was constantly enhanced. Understanding the ICPCVD growth kinetics that are critically affected by ICP is useful for the controllable synthesis of high-quality graphene on metals and oxides for various electronic applications.

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Synthesis of Diamond-Like Carbon Films on a TiO₂ Substrate by DC-Discharge Plasma Enhanced Chemical Vapor Deposition

  • 구수진;김창민;지종기
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권9호
    • /
    • pp.813-818
    • /
    • 1995
  • A diamond-like carbon (DLC) film was produced on a TiO2 substrate using a plasma enhance chemical vapor deposition (PECVD) method. The CH4-H2 plasma was produced by applying 400 V DC. The DLC film with the best crystalline structure was obtained when the concentration of CH4 in H2 was 0.75 percent by volume and total pressure was 40 torr. The presence of the diamond structure was confirmed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy methods. It was found that the diluting gas H2 played an important role in producing a DLC film using a PECVD method.