• Title/Summary/Keyword: Plant-microbe interaction

Search Result 18, Processing Time 0.03 seconds

Phallus chiangmaiensis sp. nov. and a Record of P. merulinus in Thailand

  • Sommai, Sujinda;Khamsuntorn, Phongsawat;Somrithipol, Sayanh;Luangsa-ard, Janet Jennifer;Pinruan, Umpawa
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.439-453
    • /
    • 2021
  • During the rainy season in Thailand, specimens of Phallus chiangmaiensis sp. nov. and P. merulinus were collected from Chiang Mai and Samut Sakhon Provinces, respectively. Molecular phylogenetic analyses based on sequences of the nuclear ribosomal large subunit (LSU), nuclear ribosomal 5.8S gene including the internal transcribed spacer regions 1 and 2 (ITS), and the protein-coding gene atp6 (mitochondrial adenosine triphosphate [ATP] synthase subunit 6) support the placement of the new species within Phallus. Phallus chiangmaiensis has a well-developed white indusium and campanulated caps with reticulate surfaces. It differs morphologically from the related species, as supported by the phylogenetic data. Phallus merulinus is reported here as a species that was re-encountered in Thailand. The descriptions of the species are accompanied by illustrations of macro- and micro- morphological features, and a discussion of the related taxa is presented.

Paramyrothecium eichhorniae sp. nov., Causing Leaf Blight Disease of Water Hyacinth from Thailand

  • Pinruan, Umpawa;Unartngam, Jintana;Unartngam, Arm;Piyaboon, Orawan;Sommai, Sujinda;Khamsuntorn, Phongsawat
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Paramyrothecium eichhorniae sp. nov. was observed and collected from Chiang Mai and Phetchaburi Provinces, Thailand. This new species is introduced based on morphological and molecular evidence. This fungus is characterized by its production of sporodochium conidiomata with a white setose fringe surrounding an olivaceous green to dark green slimy mass of conidia, penicillately branched conidiophores, and aseptate and cylindrical to ellipsoid conidia. Phylogenetic analyses of combined LSU rDNA, ITS rDNA, tef1, rpb2, tub2 and cmdA sequence data using maximum parsimony, maximum likelihood and Bayesian approaches placed the fungus in a strongly supported clade with other Paramyrothecium species in Stachybotryaceae (Hypocreales, Sordariomycetes). The descriptions of the species are accompanied by illustrations of morphological features, and a discussion of the related taxa is presented.

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.

Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

  • Wang, Yiming;Kwon, Soon Jae;Wu, Jingni;Choi, Jaeyoung;Lee, Yong-Hwan;Agrawal, Ganesh Kumar;Tamogami, Shigeru;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Beom-Gi;Jung, Ki-Hong;Kang, Kyu Young;Kim, Sang Gon;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.343-354
    • /
    • 2014
  • Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

Arabidopsis thaliana Remorins Interact with SnRK1 and Play a Role in Susceptibility to Beet Curly Top Virus and Beet Severe Curly Top Virus

  • Son, Seungmin;Oh, Chang Jae;An, Chung Sun
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2014
  • Remorins, a family of plant-specific proteins containing a variable N-terminal region and conserved C-terminal domain, play a role in various biotic and abiotic stresses, including host-microbe interactions. However, their functions remain to be completely elucidated, especially for the Arabidopsis thaliana remorin group 4 (AtREM4). To elucidate the role of remorins in Arabidopsis, we first showed that AtREM4s have typical molecular characteristics of the remorins, such as induction by various types of biotic and abiotic stresses, localization in plasma membrane and homo- and hetero-oligomeric interaction. Next, we showed that their loss-of-function mutants displayed reduced susceptibility to geminiviruses, Beet Curly Top Virus and Beet Severe Curly Top Virus, while overexpressors enhanced susceptibility. Moreover, we found that they interacted with SnRK1, which phosphorylated AtREM4.1, and were degraded by the 26S proteasome pathway. These results suggest that AtREM4s may be involved in the SnRK1-mediated signaling pathway and play a role as positive regulators of the cell cycle during geminivirus infection.