Browse > Article
http://dx.doi.org/10.7745/KJSSF.2011.44.1.058

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils  

Shagol, Charlotte C. (Department of Agricultural Chemistry, Chungbuk National University)
Chauhan, Puneet S. (Department of Agricultural Chemistry, Chungbuk National University)
Kim, Ki-Yoon (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Sun-Mi (Department of Agricultural Chemistry, Chungbuk National University)
Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University)
Park, Kee-Woong (Bio-Evaluation Center, KRIBB)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.44, no.1, 2011 , pp. 58-66 More about this Journal
Abstract
Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.
Keywords
Arsenic pollution; Phytoremediation; Rhizosphere bacteria; Plant-microbe interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Butcher, D.J. 2009. Phytoremediation of arsenic: Fundamental studies, practical applications, and future prospects. Appl. Spectrosc. Rev. 44:534-551.   DOI   ScienceOn
2 Cai, Y. and L.Q. Ma. 2003. Metal tolerance, accumulation and detoxification in plants with emphasis on arsenic in terrestrial plants. p. 95-114. In Y. Cai and O. Braids (ed.) Biochemistry of environmentally important trace elements. Oxford University Press, London, UK.
3 Cavalca, L., A. Corsini, S. Bachate, and V. Andreoni. 2010. Role of PGP arsenic-resistant bacteria in As mobilization and translocation in Helianthus annuus L. In Proceedings of the 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.
4 Cavalca, L., R. Zanchi, A. Corsini, M. Colombo, C. Romagnoli, E. Canzi, and V. Andreoni. 2010. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst. Appl. Microbiol. 33:154-164.   DOI   ScienceOn
5 Chopra, B.K., S. Bhat, I.P Mikheenko, Z. Hu, Y. Yang, X. Luo, H. Chen, L. van Zwieten, R. McC. Lilley, and R. Zhang. 2007. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci. Total Environ. 378:331-342.   DOI   ScienceOn
6 Compant S., B. Reiter, A. Sessitsch, J. Nowak, C. Clement, and E.A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-93.   DOI   ScienceOn
7 De Koe, T. 1994. Arsenic resistance in submediterranean Agrostis species. PhD Thesis, Vrije Universiteit, Amsterdam, The Netherlands.
8 Dhankher, O.P., Y. Li, B.P. Rosen, J. Shi, D. Salt, J. Senecoff, N.A. Shasti, and R.B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nature Biotechnol. 20:1140-1145.   DOI   ScienceOn
9 Dimpka, C.O., A. Svatos, P. Dabrowska, A. Schmidt, W. Boland, and E. Kothe. 2008. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19-25.   DOI   ScienceOn
10 Fitz, W.J. and W.W. Wenzel. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259-278.   DOI   ScienceOn
11 Antoun, H. and J. Kloepper. 2001. Plant growth promoting rhizobacteria (PGPR). p. 1477-1480. In S. Brenner and J. Miller (ed.) Encyclopedia of Genetics. Academic Press.
12 ATSDR. 2005. CERCLA Priority List of Hazardous Substances. http://www.atsdr.cdc. gov/cercla/05list.html
13 Atlas, R.M. and J. Philip. 2005. Bioremediation: Applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, D.C., USA.
14 Baker, A.J. 1981. Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutr. 3:643-654.   DOI
15 Bhumbla, D.K. and R.F Keefer. 1994. Arsenic mobilization and bioavailability in soils. p. 51-82. In J.O. Nriagu (ed.) Arsenic in the environment. Part I. Cycling and characterization. John Willey & Sons, Inc., New York, USA.
16 Barka E.A, J. Nowak, and C. Clément. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72:7246-52.   DOI   ScienceOn
17 Bech, J., C. Poschenrieder, M. Llugany, J. Barcelo, P. Tume, F.J. Tobias, J.L. Barranzuela, and E.R. Vasquez. 1997. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 203:83-91.   DOI   ScienceOn
18 Bhattacharya, P., A.B. Mukherjee, and G. Jacks. 2002. Metal contamination at a wood preservation site: characterization and experimental studies on remediation. Sci. Total Environ. 290:168-180.
19 Zhao, F.J., S.J. Dunham, and S.P. McGrath. 2002. Arsenic hyperaccumulation by different fern species. New Phytol. 156:27-31.   DOI   ScienceOn
20 Yang, J.E., Y.K. Kim, J.H. Kim, and Y.H. Park. 1999. Environmental impacts and management strategies of trace metals in soil and groundwater in The Republic of Korea. p. 270-289. In P.M. Huang and I.K. Iskandar (ed.) Soils and groundwater pollution and remediation Asia, Africa, and Oceania. CRC Press, New York, USA.
21 Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth promoting rhizobacteria for bioremediation. Environ. Int. 33:406-413.   DOI   ScienceOn
22 Sinha, S. and S.K. Mukherjee. 2008. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56:55-60.   DOI   ScienceOn
23 Saleem, M., M. Arshad, S. Hussain, and A. Bhatti. 2007. Perspective on plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. 34:635-648.   DOI   ScienceOn
24 Salt, D.E., M. Blaylock, N.P.B.A. Kumar, V. Duschenkov, B.D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13:468-474.   DOI   ScienceOn
25 Schulz, B. and C. Boyle. 2006. What are endophytes? p. 1-13. In Schulz B. et al. (ed.) Microbial Root Endophytes. Springer-Verlag, Berlin.
26 Sizova, O.I., V.V. Kochetkov, and A.M. Boronin. 2006. The arsenic-phytoremediation potential of genetically modified Pseudomonas spp. In J.L. Morel et al. (ed.) Phytoremediation of metal-contaminated soils. Vol. 68. NATO Series. Springer, The Netherlands.
27 Smith, S.E., H.M. Christophersen, S. Pope, and F.A. Smith. 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1-21.   DOI
28 Treeby, M., H. Marschner, and V. Romheld. 1989. Mobilization of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic chelators. Plant Soil 114:217-22.   DOI   ScienceOn
29 US EPA. 1999. Phytoremediation resource guide. US Environmental Protection Agency. Washington DC, USA.
30 Vazquez, S., R. Agha, A. Granado, M.J. Sarro, E. Esteban, J.M. Penalosa, and R.O. Carpena. 2006. Use of white lupine plant for stabilization of Cd and As polluted acid soil. Water Air Soil Pollut. 177:349-365.   DOI   ScienceOn
31 Pillay, V.K. and J. Nowak. 1997. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol. 43:354-61.   DOI   ScienceOn
32 Wang, S. and X. Zhao. 2009. On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manage. 90:2367-2376.   DOI   ScienceOn
33 Wenzel, W.W., D.C. Adriano, D. Salt, and R. Smith. 1999. Phytoremediation: a plant-microbe-based remediation system. p. 457-508. In D.C. Adriano et al. (ed.) Agronomy Monograph 37, Madison, WI, USA.
34 Xiong, J., L. Wu, S. Tu, J.D. Van Nostrand, Z. He, J. Zhou, and G. Wang. 2010. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L. Appl. Environ. Microbiol. 76:7277-7284.   DOI   ScienceOn
35 Panda, S.K., R.K. Upadhyay, and S. Nath. 2010. Arsenic stress in plants. J. Agron. Crop Sci. 196:161-174   DOI   ScienceOn
36 Pierzynski, G.M., J.T. Sims, and G.F. Vance. 2005. Soils and environmental quality. CRC Press, Boca Raton, FL, USA.
37 Porter, E.K. and P.J. Peterson. 1975. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Environ. 4:365-371.   DOI   ScienceOn
38 Pulford, I.D. and C. Watson. 2003. Phytoremediation of heavy metal-contaminated land by trees - A review. Environ. Int. 29:529-540.   DOI   ScienceOn
39 Rajkumar, M., N. Ae, M.N. Vara Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal extraction. Trends Biotechnol. 28:142-149.   DOI   ScienceOn
40 Rajkumar, M., M.N. Vara Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 29:120-130.   DOI   ScienceOn
41 Reed, M. and B. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria in either copper and polyaromatic hydrocarbons. Can. J. Microbiol. 51:1061-1069.   DOI   ScienceOn
42 Reichman, S.M. 2007. The potential of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39:2587-2593.   DOI   ScienceOn
43 Rutherford, D.W., A.J. Bednar, J.R. Garbarino, R. Needham, K.W. Staver, and R.L. Wershaw. 2003. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environ. Sci. Technol. 37:1515-1520.   DOI   ScienceOn
44 Ryan R.P., K. Germaine, A. Franks, D.J. Ryan, and D.N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9.   DOI   ScienceOn
45 Safronova, V., V. Stepanok, G. Engqvist, Y. Alekseyev, and A. Belimov. 2006. Root associated bacteria containing 1- aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. 42:267-272.   DOI   ScienceOn
46 Mandal, S.M., B. Pati, R. Das, K. Amit, and K. A. Ghosh. 2008. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from root nodules of Vigna mungo (L.) Hepper grown in arsenic-contaminated field. J. Gen. Appl. Microbiol. 54:93-99.   DOI   ScienceOn
47 Meagher, R.B. and A.C. Heaton. 2005. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J. Ind. Microbiol. Biotechnol. 32:502-13.   DOI   ScienceOn
48 Meharg, A.A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154:29-43.   DOI   ScienceOn
49 Nie, L., S. Shah, A. Rashid, G.I. Burd, D.G. Dixon, and B. Glick. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol. Biochem. 40:355-361.   DOI   ScienceOn
50 Merkle, S. 2005. Engineering forest trees with heavy metal resistance genes for phytoremediation. p. 117-120. In Agricultural Biotechnology: Beyond Food and Energy to Health and Environment. National Agricultural Biotechnology Council, New York, USA.
51 Nordstrom, D.K. 2002. Worldwide occurrences of arsenic in ground water. Science 296:2143-2145.   DOI
52 Nriagu, J.O. and J.M Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134-139.   DOI   ScienceOn
53 Nriagu, J.O. 1989. A global assessment of natural sources of atmospheric trace metals. Nature (London) 338:47-49.   DOI
54 Nriagu, J.O. 2002. Arsenic poisoning through the ages. p. 1-50. In W.T. Frankenberger (ed.) Environmental chemistry of arsenic. Marcel Dekker, New York, USA.
55 Nriagu, J.O., P. Bhattacharya, A.B. Mukherjee, J. Bundschuh, R. Zevenhoven, and R.H. Loppert. 2007. Arsenic in soil and groundwater: an overview. p. 3-60. In P. Bhattacharya et al. (ed.) Arsenic in soil and groundwater environment. Trace Metals and Other Contaminants in the Environment, Vol. 9. Elsevier, New York, USA.
56 O'Neill, P. 1995. Arsenic. p. 105-121. In B.J. Alloway (ed.) Heavy metals in soils. Blackie Academic and Professional, London, UK
57 Pacyna, J.M. and E.G. Pacyna. 2001. An assessment of global and regional emissions of trace metals in the atmosphere from anthropogenic sources world. Environ. Rev. 9:269-298.   DOI
58 Francesconi, K., P. Visoottiviseth, and W. Sridokchan. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284:27-35.   DOI
59 Gerhardt, K.E., B.M. Greenberg, and B.R. Glick. 2006. The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Current Trends in Microbiology 2:61-73.
60 Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367-374.   DOI   ScienceOn
61 Jonnalagadda, S.B. and G. Nenzou. 1997. Studies on arsenic rich mine dumps: II. The element uptake by vegetation. J. Environ. Sci. Health, Part A. 32:455-64.
62 Kavamura, V.N. and E. Esposito. 2010. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 28:61-69.   DOI   ScienceOn
63 Kidd, P., J. Barcelo, M.P. Bernal, F. Navari-Izzo, C. Poschenrieder, S. Shilev, R. Clemente, and C. Monterroso. 2009. Trace element behaviour at the root-soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67:243-259.   DOI   ScienceOn
64 Kim, J.J. 1989. Soil Pollution. p. 169-214. In K. Han et al. (ed.). Agricultural Environmental Chemistry, Dong-Hwa Technol. Pub. Co. Seoul, Korea.
65 Kim, B.Y. 1993. Soil Pollution and Improvement Countermeasure. In Soil Management for Sustainable Agric. Kor. Soc. Soil Fert., Suwon, Korea. p. 68-98.
66 King, D.J. A.I Doronila, C. Feenstra, A.J.M Baker, and I.E Woodrow. 2008. Phytostabilization of arsenical gold mine tailings using for Eucalyptus species: Growth, arsenic uptake and availability after five years. Sci. Total Environ. 406:35-42.   DOI
67 Luo, C.L., Z.G. Shen, and X.D. Li. 2008. Plant uptake and leaching of metals during the hot EDDS-enhanced phytoextraction process. Int. J. Phytorem. 9:181-196.
68 Ma, L.Q., K.M. Komar, C. Tu, W.H. Zhang, Y. Cai, and E.D. Kennelly. 2001. A fern that hyperaccumulates. Nature 409:579.   DOI   ScienceOn
69 Ma, Y., M.N.V. Prasad, M. Rajkumar, and H. Freitas. 2011. Plant growth promoting rhizobacteria and endophyte accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29:248-258.   DOI   ScienceOn
70 Mandal, B.K. and K.T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235.   DOI   ScienceOn