DOI QR코드

DOI QR Code

Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

  • Wang, Yiming (Department of Plant Microbe Interaction, Max Planck Institute for Plant Breeding Research) ;
  • Kwon, Soon Jae (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Wu, Jingni (Department of Plant Microbe Interaction, Max Planck Institute for Plant Breeding Research) ;
  • Choi, Jaeyoung (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University) ;
  • Agrawal, Ganesh Kumar (Research Laboratory for Biotechnology and Biochemistry (RLABB)) ;
  • Tamogami, Shigeru (Laboratory of Biologically Active Compounds, Department of Biological Production, Akita Prefectural University) ;
  • Rakwal, Randeep (Research Laboratory for Biotechnology and Biochemistry (RLABB)) ;
  • Park, Sang-Ryeol (Molecular Breeding Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Beom-Gi (Molecular Breeding Division, National Academy of Agricultural Science, RDA) ;
  • Jung, Ki-Hong (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Kang, Kyu Young (Plant Molecular Biology and Biotechnology Research Center/Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Sang Gon (Plant Molecular Biology and Biotechnology Research Center/Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Sun Tae (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
  • Received : 2014.07.04
  • Accepted : 2014.07.30
  • Published : 2014.12.01

Abstract

Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

Keywords

References

  1. Acharya, B. R., Raina, S., Maqbool, S. B., Jagadeeswaran, G., Mosher, S. L., Appel, H. M., Schultz, J. C., Klessig, D. F. and Raina, R. 2007. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J. 50:488-499. https://doi.org/10.1111/j.1365-313X.2007.03064.x
  2. Arlorio, M., Ludwig, A., Boller, T. and Bonfante, P. 1992. Inhibition of fungal growth by plant chitinases and ${\beta}$-1,3-glucanases. Protoplasma 171:34-43. https://doi.org/10.1007/BF01379278
  3. Bagnaresi, P., Biselli, C., Orru, L., Urso, S., Crispino, L., Abbruscato, P., Piffanelli, P., Lupotto, E., Cattivelli, L. and Vale, G. 2012. Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One 7:e51609. https://doi.org/10.1371/journal.pone.0051609
  4. Bennett, R. N. and Wallsgrove, R. M. 1994. Secondary metabolites in plant defence mechanisms. New Phytol. 127:617-633. https://doi.org/10.1111/j.1469-8137.1994.tb02968.x
  5. Brutus, A., Sicilia, F., Macone, A., Cervone, F. and De Lorenzo, G. 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 107:9452-9457. https://doi.org/10.1073/pnas.1000675107
  6. Cantu, D., Vicente, A. R., Labavitch, J. M., Bennett, A. B. and Powell, A. L. 2008. Strangers in the matrix: Plant cell walls and pathogen susceptibility. Trends Plant Sci. 13:610-617. https://doi.org/10.1016/j.tplants.2008.09.002
  7. Cartwright, D. W., Langcake, P., Pryce, R. J., Leworthy, D. P. and Ride, J. P. 1981. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535-537. https://doi.org/10.1016/S0031-9422(00)84189-8
  8. Chen, K., Du, L. and Chen, Z. 2003. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol. Biol. 53:61-74. https://doi.org/10.1023/B:PLAN.0000009265.72567.58
  9. Chen, K., Fan, B., Du, L. and Chen, Z. 2004. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from arabidopsis. Plant Mol. Biol. 56:271-283. https://doi.org/10.1007/s11103-004-3381-2
  10. Chi, M. H., Park, S. Y., Kim, S. and Lee, Y. H. 2009. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5:e1000401. https://doi.org/10.1371/journal.ppat.1000401
  11. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500. https://doi.org/10.1038/nature05999
  12. Couch, B. C., Fudal, I., Lebrun, M. H., Tharreau, D., Valent, B., van Kim, P., Notteghem, J. L. and Kohn, L. M. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613-630. https://doi.org/10.1534/genetics.105.041780
  13. Dardick, C. and Ronald, P. 2006. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog. 2:e2. https://doi.org/10.1371/journal.ppat.0020002
  14. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G.,S., Muthukrishnan, S. and Datta, S.,K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98:1138-1145. https://doi.org/10.1007/s001220051178
  15. Dunning, F. M., Sun, W., Jansen, K. L., Helft, L. and Bent, A. F. 2007. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 19:3297-3313. https://doi.org/10.1105/tpc.106.048801
  16. Ederli, L., Madeo, L., Calderini, O., Gehring, C., Moretti, C., Buonaurio, R., Paolocci, F. and Pasqualini, S. 2011. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. J. Plant Physiol. 168:1784-1794. https://doi.org/10.1016/j.jplph.2011.05.018
  17. Frederickson Matika, D. E. and Loake, G. J. 2014. Redox regulation in plant immune function. Antioxid. Redox Signal. doi:10.1089/ars.2013.5679.
  18. Greeff, C., Roux, M., Mundy, J. and Petersen, M. 2012. Receptorlike kinase complexes in plant innate immunity. Front. Plant. Sci. 3:209.
  19. Hasegawa, M., Mitsuhara, I., Seo, S., Imai, T., Koga, J., Okada, K., Yamane, H. and Ohashi, Y. 2010. Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol. Plant-Microbe Interact. 23:1000-1011. https://doi.org/10.1094/MPMI-23-8-1000
  20. He, Z. H., Fujiki, M. and Kohorn, B. D. 1996. A cell wall-associated, receptor-like protein kinase. J. Biol. Chem. 271:19789- 19793. https://doi.org/10.1074/jbc.271.33.19789
  21. Hilaire, E., Young, S. A., Willard, L. H., McGee, J. D., Sweat, T., Chittoor, J. M., Guikema, J. A. and Leach, J. E. 2001. Vascular defense responses in rice: Peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol. Plant-Microbe Interact. 14:1411-1419. https://doi.org/10.1094/MPMI.2001.14.12.1411
  22. Iqbal, M. M., Nazir, F., Ali, S., Asif, M. A., Zafar, Y., Iqbal, J. and Ali, G. M. 2012. Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol. Biotechnol. 50:129-136. https://doi.org/10.1007/s12033-011-9426-2
  23. Iwai, T., Miyasaka, A., Seo, S. and Ohashi, Y. 2006. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol. 142:1202-1215. https://doi.org/10.1104/pp.106.085258
  24. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  25. Jwa, N. S., Agrawal, G. K., Tamogami, S., Yonekura, M., Han, O., Iwahashi, H. and Rakwal, R. 2006. Role of defense/stressrelated marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol. Biochem. 44:261-273. https://doi.org/10.1016/j.plaphy.2006.06.010
  26. Kawahara, Y., Oono, Y., Kanamori, H., Matsumoto, T., Itoh, T. and Minami, E. 2012. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS One 7:e49423. https://doi.org/10.1371/journal.pone.0049423
  27. Kim, S. G., Wang, Y., Lee, K. H., Park, Z. Y., Park, J., Wu, J., Kwon, S. J., Lee, Y. H., Agrawal, G. K., Rakwal, R., Kim, S. T. and Kang, K. Y. 2013. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78:58-71. https://doi.org/10.1016/j.jprot.2012.10.029
  28. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. and Kang, K. Y. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569-3578. https://doi.org/10.1002/pmic.200400999
  29. Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H. and Kang, K. Y. 2008. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep. 27:593-603. https://doi.org/10.1007/s00299-007-0485-6
  30. Kim, S. T., Kang, Y. H., Wang, Y., Wu, J., Park, Z. Y., Rakwal, R., Agrawal, G. K., Lee, S. Y. and Kang, K. Y. 2009. Secretome analysis of differentially induced proteins in rice suspensioncultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302-1313. https://doi.org/10.1002/pmic.200800589
  31. Kodama, O., Miyakawa, J., Akatsuka, T. and Kiyosawa, S. 1992. Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807-3809. https://doi.org/10.1016/S0031-9422(00)97532-0
  32. Lecourieux, D., Ranjeva, R. and Pugin, A. 2006. Calcium in plant defence-signalling pathways. New Phytol. 171:249-269. https://doi.org/10.1111/j.1469-8137.2006.01777.x
  33. Lionetti, V., Raiola, A., Camardella, L., Giovane, A., Obel, N., Pauly, M., Favaron, F., Cervone, F. and Bellincampi, D. 2007. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol. 143:1871-1880. https://doi.org/10.1104/pp.106.090803
  34. McGee, J. D., Hamer, J. E. and Hodges, T. K. 2001. Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol. Plant-Microbe Interact. 14:877-886. https://doi.org/10.1094/MPMI.2001.14.7.877
  35. Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  36. Pandey, S. P. and Somssich, I. E. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150:1648-1655. https://doi.org/10.1104/pp.109.138990
  37. Pang, C. H., Li, K. and Wang, B. 2011. Overexpression of Ss-CHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol. Plant. 143:355-366. https://doi.org/10.1111/j.1399-3054.2011.01515.x
  38. Radauer, C., Lackner, P. and Breiteneder, H. 2008. The bet v 1 fold: An ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol. Biol. 8:286. https://doi.org/10.1186/1471-2148-8-286
  39. Ramalingam, J., Vera Cruz, C. M., Kukreja, K., Chittoor, J. M., Wu, J. L., Lee, S. W., Baraoidan, M., George, M. L., Cohen, M. B., Hulbert, S. H., Leach, J. E. and Leung, H. 2003. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol. Plant-Microbe Interact. 16:14-24. https://doi.org/10.1094/MPMI.2003.16.1.14
  40. Rasmussen, M. W., Roux, M., Petersen, M. and Mundy, J. 2012. MAP kinase cascades in Arabidopsis innate immunity. Front. Plant. Sci. 3:169.
  41. Ribot, C., Hirsch, J., Balzergue, S., Tharreau, D., Notteghem, J. L., Lebrun, M. H. and Morel, J. B. 2008. Susceptibility of rice to the blast fungus, Magnaporthe grisea. J. Plant Physiol. 165:114-124. https://doi.org/10.1016/j.jplph.2007.06.013
  42. Ross, C. A., Liu, Y. and Shen, Q. J. 2007. The WRKY gene family in rice (Oryza sativa). J. Integr. Plant Biol. 49:827-842. https://doi.org/10.1111/j.1744-7909.2007.00504.x
  43. Ryu, H. S., Han, M., Lee, S. K., Cho, J. I., Ryoo, N., Heu, S., Lee, Y. H., Bhoo, S. H., Wang, G. L., Hahn, T. R. and Jeon, J. S. 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25:836-847. https://doi.org/10.1007/s00299-006-0138-1
  44. Sels, J., Mathys, J., De Coninck, B. M., Cammue, B. P. and De Bolle, M. F. 2008. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Biochem. 46:941-950. https://doi.org/10.1016/j.plaphy.2008.06.011
  45. Shimono, M., Koga, H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., Kurihara, T., Matsushita, A., Sugano, S., Jiang, C. J., Kaku, H., Inoue, H. and Takatsuji, H. 2012. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol. Plant. Pathol. 13:83-94. https://doi.org/10.1111/j.1364-3703.2011.00732.x
  46. Shimono, M., Sugano, S., Nakayama, A., Jiang, C. J., Ono, K., Toki, S. and Takatsuji, H. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell. 19:2064-2076. https://doi.org/10.1105/tpc.106.046250
  47. Singh, M. P., Lee, F. N., Counce, P. A. and Gibbons, J. H. 2004. Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology 94:819-825. https://doi.org/10.1094/PHYTO.2004.94.8.819
  48. Steinwand, B. J. and Kieber, J. J. 2010. The role of receptorlike kinases in regulating cell wall function. Plant Physiol. 153:479-484. https://doi.org/10.1104/pp.110.155887
  49. Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  50. Tamogami, S. and Kodama, O. 2000. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54:689-694. https://doi.org/10.1016/S0031-9422(00)00190-4
  51. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L. A., Rhee, S. Y. and Stitt, M. 2004. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37:914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x
  52. Wang, Y., Kim, S. G., Wu, J., Huh, H. H., Lee, S. J., Rakwal, R., Agrawal, G. K., Park, Z. Y., Kang, K. Y. and Kim, S. T. 2013. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics 13:1901-1912. https://doi.org/10.1002/pmic.201200454
  53. Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., Chen, Z., Gu, H., Li, C., Qin, G. and Qu, L. J. 2013. Transcriptional profiling of rice early response to Magnaporthe oryzae identified Os-WRKYs as important regulators in rice blast resistance. PLoS One. 8:e59720. https://doi.org/10.1371/journal.pone.0059720
  54. Wettenhall, J. M. and Smyth, G. K. 2004. limmaGUI: A graphical user interface for linear modeling of microarray data. Bioinformatics 20:3705-3706. https://doi.org/10.1093/bioinformatics/bth449
  55. Wu, J., Wang, Y., Kim, S. T., Kim, S. G. and Kang, K. Y. 2013. Characterization of a newly identified rice chitinase-like protein (OsCLP) homologous to xylanase inhibitor. BMC Biotechnol. 13:4. https://doi.org/10.1186/1472-6750-13-4
  56. Xie, X. Z., Xue, Y. J., Zhou, J. J., Zhang, B., Chang, H. and Takano, M. 2011. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol. Plant. 4:688-696. https://doi.org/10.1093/mp/ssr005
  57. Yamane, H. 2013. Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci. Biotechnol. Biochem. 77:1141-1148. https://doi.org/10.1271/bbb.130109
  58. Zhao, C. J., Wang, A. R., Shi, Y. J., Wang, L. Q., Liu, W. D., Wang, Z. H. and Lu, G. D. 2008. Identification of defenserelated genes in rice responding to challenge by Rhizoctonia solani. Theor. Appl. Genet. 116:501-516. https://doi.org/10.1007/s00122-007-0686-y

Cited by

  1. Discovery of the molecular mechanisms of the novel chalcone-based Magnaporthe oryzae inhibitor C1 using transcriptomic profiling and co-expression network analysis vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3385-9
  2. Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzae 2017, https://doi.org/10.1111/1462-2920.13888
  3. Metabolo-transcriptome profiling of barley reveals induction of chitin elicitor receptor kinase gene (HvCERK1) conferring resistance against Fusarium graminearum vol.93, pp.3, 2017, https://doi.org/10.1007/s11103-016-0559-3
  4. Transcriptome Analysis Highlights Defense and Signaling Pathways Mediated by Rice pi21 Gene with Partial Resistance to Magnaporthe oryzae vol.7, 2016, https://doi.org/10.3389/fpls.2016.01834
  5. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of M agnaporthe oryzae appressorium vol.17, pp.3, 2016, https://doi.org/10.1111/mpp.12286
  6. Massive analysis of cDNA ends (MACE) reveals a co-segregating candidate gene for LpPg1 stem rust resistance in perennial ryegrass (Lolium perenne) vol.129, pp.10, 2016, https://doi.org/10.1007/s00122-016-2749-4
  7. Friends or foes? Emerging insights from fungal interactions with plants vol.40, pp.2, 2016, https://doi.org/10.1093/femsre/fuv045
  8. Comparative Transcriptome Analyses of Gene Expression Changes Triggered by Rhizoctonia solani AG1 IA Infection in Resistant and Susceptible Rice Varieties vol.8, 2017, https://doi.org/10.3389/fpls.2017.01422
  9. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire ofLeptosphaeria maculansduring the colonization ofBrassica napusseedlings vol.17, pp.8, 2016, https://doi.org/10.1111/mpp.12356
  10. Analysis of differential transcript expression in chickpea during compatible and incompatible interactions with Fusarium oxysporum f. sp. ciceris Race 4 vol.8, pp.2, 2018, https://doi.org/10.1007/s13205-018-1128-z
  11. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa vol.11, pp.1, 2018, https://doi.org/10.1186/s12284-018-0243-0
  12. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms vol.93, pp.4, 2018, https://doi.org/10.1111/tpj.13802
  13. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection vol.18, pp.5, 2018, https://doi.org/10.1007/s10142-018-0607-y
  14. Quantitative Proteomic Analysis Provides Insights into Rice Defense Mechanisms against Magnaporthe oryzae vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19071950