• 제목/요약/키워드: Plant sterols

검색결과 54건 처리시간 0.029초

Anthraquinones with Antibacterial Activities from Crucianella maritima L. Growing in Egypt

  • El-Lakany, Abdalla M.;Aboul-Ela, Maha A.;Abdel-Kader, Maged S.;Badr, Jihan M.;Sabri, Nawal N.;Goher, Yousry
    • Natural Product Sciences
    • /
    • 제10권2호
    • /
    • pp.63-68
    • /
    • 2004
  • From the extracts of Crucianella maritima L. (Rubiaceae), five new anthraquinones namely; 1-hydroxy-2-methyl-6-methoxy anthraquinone, 6-methoxy-2-methyl quinizarin, 6-methyl-anthragallol-2,3-dimethyl ether, 6-methyl-anthragallol-2-methyl ether, and 1-hydroxy-2-carbomethoxyanthraquinone were isolated and identified. In addition, deacetyl asperulosidic acid 6'-glucoside sodium salt, a new iridoid diglucoside, along with twelve known anthraquinones, three flavonols, three sterols, and one triterpene were also isolated and identified for the first time from this plant. Their chemical structures were established by physical, chemical and spectroscopic data, including UV, MS, ID- and 2D-NMR analyses. The antimicrobial, cytotoxic activities and a preliminary clinical trial of the crude extracts and some isolates are also presented. Chemotaxonomical aspects are briefly discussed.

Phytochemical Constituens of Cirsium setidens Nakai and Their Cytotoxicity against Human Cancer Cell Lines

  • Lee, Won-Bin;Kwon, Hak-Cheol;Chol, Ock-Ryun;Lee, Kang-Choon;Choi, Sang-Un;Baek, Nam-In;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.628-635
    • /
    • 2002
  • Five terpenes (1~5), three fatty acids (6~8), two sterols (9 and 11), and a monogalactosyldiacyl glycerol (10) were isolated from the methylene chloride extract of the aerial part of Cirsium setidens. Their chemical structures were determined to be $\alpha$-tocopherol (1), 25-hydroperoxycycloart-23-en-3$\beta$-o1 (2), 24-hydroperoxycycloart-25-en-3$\beta$-o1 (3), mokko lactone (4), transphytol (5), 9, 12, 15-octadecatrienoic acid (6), 9, 12-octadecadienoic acid (7), hexadecanoic acid (8), acylglycosyl $\beta$-sitosterol (9), (2R)-1, 2-O-(9z, 12z, 15z-dioctadecatrienoyl)-3-O-$\beta$-D-galactopyranosyl glycerol (10) and $\beta$-sitosterol glucoside (11) by spectral evidences. Compound 3 exhibited significant cytotoxic activity against five human cancer cell lines with its $ED_{50}$ values ranging from 2.66 to 11.25 $\mu$M.

고지방식이와 병행 섭취한 뽕잎가루가 흰쥐의 혈중 지질관계 인자와 간 기능 개선에 미치는 영향 (Effect of Mulberry Extract on the Lipid Profile and Liver Function in Mice Fed a High Fat Diet)

  • 최경순;김용환;신경옥
    • 한국식품영양학회지
    • /
    • 제29권3호
    • /
    • pp.411-419
    • /
    • 2016
  • In this study, we determined the effect of the mulberry leaf powder on blood lipid metabolism and liver function improvement of mice fed a high fat diet. The mulberry leaf showed a moisture content of $10.74{\pm}0.56%$, ash $9.67{\pm}0.56%$, crude protein $25.24{\pm}1.02%$, and crude fat $2.66{\pm}0.08%$. In the group with high fat diet supplemented with mulberry leaf powder, serum low-density lipoprotein (LDL-cholesterol) and total cholesterol levels were significantly lower (p<0.05); also, serum phospholipid and aspartate amino transferase (AST) levels were significantly lower (p<0.05). Serum insulin and leptin levels were high in mice fed a high fat diet; however, addition of mulberry leaf powder 10% in the diet had no significant effect on blood insulin and leptin control. The results of the study suggested that various plant sterols in mulberry leaf improve lipid metabolism and liver function in ICR-mice.

In Vitro Effect of Methanolic Extract of Argemone mexicana against Trichomonas vaginalis

  • Elizondo-Luevano, Joel Horacio;Verde-Star, Julia;Gonzalez-Horta, Azucena;Castro-Rios, Rocio;Hernandez-Garcia, Magda Elizabeth;Chavez-Montes, Abelardo
    • Parasites, Hosts and Diseases
    • /
    • 제58권2호
    • /
    • pp.135-145
    • /
    • 2020
  • Infections caused by Trichomonas vaginalis in humans are one of the main public health problems caused by sexually transmitted diseases. Objective of this study was to evaluate potential biological activity of the medicinal plant Argemone mexicana (Mexican poppy) on T. vaginalis. Methanolic extracts of the stems and leaves of A. mexicana, and different fractions were prepared with solvents of different polarities. The extracts and functional groups were detected containing sterols, triterpenes, quinones, flavonoids and, alkaloids. Extracts from both the stems and leaves of A. mexicana inhibited the growth of T. vaginalis with half-maximal inhibitory concentration value of 70.6 and 67.2 ㎍/ml, respectively. In the active fractions, the most abundant compounds were berberine and jatrorrhizine, with presumed antiparasitic activity.

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 추계학술대회
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 춘계학술대회
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Brassinosteroid의 대사공학 (Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways)

  • 이미옥;송기홍;이현경;정지윤;최빛나리;최성화
    • Journal of Plant Biotechnology
    • /
    • 제29권2호
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

Sources and Distributions of Organic Wastewater Compounds on the Mokpo Coast of Korea

  • Choi, Min-Kyu;Choi, Hee-Gu;Moon, Hyo-Bang;Yu, Jun;Kang, Sung-Kyung;Choi, Su-Kyung
    • Fisheries and Aquatic Sciences
    • /
    • 제10권4호
    • /
    • pp.205-214
    • /
    • 2007
  • Surface water and sediment samples collected from the Mokpo coast of Korea were analyzed for molecular markers of organic municipal wastewaters, i.e., 11 fecal sterols including coprostanol (Cop) and nonylphenolic compounds (NPs), to characterize the main routes of these wastewaters to the coast and to assess contamination levels. Concentrations of Cop ranged from 94 to 7,568 ng/L in surface water and from 43 to 38,108 ng/g dry weight in sediments. Concentrations of NPs [nonylphenol (NP) and nonylphenol mono- and di-ethoxylates ($NP_{1-2}EOs$)] ranged from 123 to 4,729 ng/L in surface water and from 4 to 2,119 ng/ng dry weight in sediments. The levels of these compounds were much higher at stations near the rivers that pass through the urban center of Mokpo and the outfall of the wastewater treatment plant (WWTP). The spatial distribution of Cop levels was statistically similar to that of NPs (r=0.809 and 0.982 in surface water and sediments, respectively), indicating that these compounds may have similar discharge points, transport, mixing, and deposition in the study area. These results suggest that considerable amounts of organic wastewater compounds are discharged through rivers and WWTP effluent to the Mokpo coast.

무환자(無患子)나무 종자(種字)의 성분(成分)에 관(關)한 연구(硏究) (Studies on the Composition of Sapindus Mukurossi Seeds)

  • 김명찬;정태명;양민석
    • 한국식품과학회지
    • /
    • 제9권1호
    • /
    • pp.41-46
    • /
    • 1977
  • 1. 무환자(無患子)나무종자중(種字中)의 유지함량(油脂含量)은 45.7%로서 콩, 참깨, 땅콩에 비해서 많은 편에 속한다. 2. 지방산(脂肪酸)은 Oleic acid(61.6%)와 Gadoleic acid(20.4%)로서 주요성분(主要成分)을 이루고 있고 monoene산(酸)이 전체지방산(全體脂肪酸)의 82%를 차지하고 있는것이 특징적(特徵的)이다. 3. Amino산조성(酸組成)은 Glutamic acid의 함량(含量)이 6.673%로서 가장높고 대체적으로 필수(必須) amino산(酸)인 Isoleucine(1.255%), Leucine(2.145%), Lysine(2.191%), Phenylalanine(1.536%), Threonine(1.171%), Valine(1.772%)등이 함량(含量)이 높았다. 4. Sterol조성(組成)은 4-desmethyl sterol, 4-monomethyl sterol fraction에서 다 같이 일반고등식물중(一般高等植物中) 성분(成分)과 대차(大差)가 없었으며 단지 4-monomethyl sterol fraction에 있는 RRT 1.27(31.5%)의 미동정물질(未同定物質)이 있다는 것이 특이(特異)하였다.

  • PDF

산성백토를 이용한 저온압착 유채유의 탈색 평가 (Bleaching of cold-pressed rapeseed oil using activated clay)

  • 이영화;박원;이태성;김광수;장영석;이경보
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.560-567
    • /
    • 2016
  • 최근 건강기능성 식용유에 대한 선호도가 높아지면서 저온압착(cold-pressing) 유채유에 대한 관심이 증대되고 있다. 저온압착 유채유는 정제유에 비해 기름 고유의 맛과 향을 느낄 수 있는 장점이 있다. 본 연구에서는 산성백토를 이용한 저온압착 유채유의 탈색과정에서 산성백토의 첨가량, 처리시간 및 반응온도에 따른 탈색 후 이화학적 특성과 품질특성을 분석하고자 하였다. 이화학적 특성으로 색차(명도, 적색도, 황색도)를 조사하였고, 품질특성은 chlorophyll-A 와 carotenoid 함량, 지방산 조성, 토코페롤(${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$), 및 식물성 스테롤(${\beta}$-sitosterol, campesterol, stigmasterol)을 분석하였다. 먼저 산성백토(DC-SUPER)의 첨가량(1, 2, 3%)에 따른 저온압착 유채유의 색도변화를 관찰한 결과, DC-SUPER 첨가량 2%에서 탈색 1시간 후 유채유의 색도가 갈색에서 연노랑으로 옅어졌다. 본 결과를 바탕으로 총 3종의 산성백토(DC-SUPER, DC-A3, 및 P1)에 대해 첨가량 2%를 기준으로 처리시간(20, 40, 60, 80분) 증가에 따른 색차를 조사한 결과, 처리시간 20분 경과 후부터 대조구 대비 명도(L)는 증가하였고, 적색도(a)와 황색도(b)는 감소하는 경향을 보였다. 또한 산성백토 DC-SUPER 2% 첨가 후, 반응온도(40, 80, $120^{\circ}C$) 증가에 따른 색차를 조사한 결과, L값과 a값은 큰 변화를 보이지 않았으나, b값은 급격히 감소하는 경향을 보였다. 특히, 반응온도 $40^{\circ}C$에서 처리시간 20분 이내에 클로로필 A와 카로티노이드는 대부분 제거되었고, 토코페롤 함량도 현저히 감소하였다. 탈색 전 저온압착 유채유의 총 토코페롤 함량은 46.62mg/100g이나, 탈색 후 총 토코페놀은 12.67mg/100g(20분 탈색), 15.31mg/100g(40분 탈색), 13.56mg/100g(60분 탈색)로 나타나, 약 50% 이상 감소하였다. 탈색 후 ${\alpha}$-토코페롤과 ${\delta}$-토코페롤의 함량 감소가 매우 컸고, ${\gamma}$>${\beta}$>${\alpha}$>${\delta}$-토코페롤의 순으로 포함되어 있었다. 하지만 탈색 전 후에 저온압착 유채유의 식물성 스테롤 함량은 큰 변화가 없었다. 따라서 본 연구에서는 산성백토 이용 저온압착 유채유 탈색시 색도를 향상시킴을 확인하였으며, 영양학적으로 우수한 총 토코페롤 등이 감소한 바 향후 이를 보완 할 수 있는 연구가 필요하다.