Anthraquinones with Antibacterial Activities from Crucianella maritima L. Growing in Egypt

  • El-Lakany, Abdalla M. (Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria) ;
  • Aboul-Ela, Maha A. (Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria) ;
  • Abdel-Kader, Maged S. (Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria) ;
  • Badr, Jihan M. (Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria) ;
  • Sabri, Nawal N. (Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria) ;
  • Goher, Yousry (Department of Botany and Microbiology, Faculty of Science, University of Alexandria)
  • Published : 2004.04.30

Abstract

From the extracts of Crucianella maritima L. (Rubiaceae), five new anthraquinones namely; 1-hydroxy-2-methyl-6-methoxy anthraquinone, 6-methoxy-2-methyl quinizarin, 6-methyl-anthragallol-2,3-dimethyl ether, 6-methyl-anthragallol-2-methyl ether, and 1-hydroxy-2-carbomethoxyanthraquinone were isolated and identified. In addition, deacetyl asperulosidic acid 6'-glucoside sodium salt, a new iridoid diglucoside, along with twelve known anthraquinones, three flavonols, three sterols, and one triterpene were also isolated and identified for the first time from this plant. Their chemical structures were established by physical, chemical and spectroscopic data, including UV, MS, ID- and 2D-NMR analyses. The antimicrobial, cytotoxic activities and a preliminary clinical trial of the crude extracts and some isolates are also presented. Chemotaxonomical aspects are briefly discussed.

Keywords

References

  1. Adeside, G. A. and Adesogan, F. K. Oruwal, a Novel Dihydro-anthraquinone pigment from Morinda lucida Benth. J. Chem. Soc. (Chem. Comm.), 405-406 (1972)
  2. Agrawal, P. K. 'Carbon 13 NMR of flavonoids', Central Institute of Medicinal and Aromatic Plants, Lucknow, India, Elsevier, Amsterdam-Oxford-New York-Tokyo (1989)
  3. Biesinger, K. E., Williams, L. R. and Schalie, W.H. Environmental Monitoring and Support Laboratory EPA/600/8087-/011,57 (1987)
  4. Boros C. A. and Stermitz F. R. Iridoids: an updated review. Part I. J. Nat. Prod., 53, 1055-1068 (1990) https://doi.org/10.1021/np50071a001
  5. Briggs, L. H. and Nichollas, G. A. Chemistry of the Coprosma genus; the occurrence of Asperuloside. J. Chem. Soc., 3940-3943 (1954) https://doi.org/10.1039/jr9540003940
  6. Burnett, A. R. and Thomson, R. H. Biogenesis of the anthraquinones in Rubia tinctorum L. (Madder), J. Chem. Soc.(c), 2437-2441 (1968)
  7. El-Gamal, A. A., Takeya, K., Itokawa, H., Halim, A. F., Amer, M. M., Saad, H. A., and Awad, S. A., Anthraquinones from Galium sinaicum, Phytochemistry, 40, 245-251 (1995) https://doi.org/10.1016/0031-9422(95)00145-W
  8. El-Lakany, A. M., Aboul-Ela, M. A., EI-Shaer, N. S., Badr, J. M., and Sabri, N. N., Anthraquinones from the roots of Crucianella maritima L. Alex. J. Pharm. Sci., 15, 91-95 (2001)
  9. Itokawa, H., Mihara, K., and Takeya, K., Studies on a Novel Anthraquinone and its Glycosides isolated from Rubia cordifolia and R. Okane. Chem. Pharm. Bull., 31, 2353-2358 (1983) https://doi.org/10.1248/cpb.31.2353
  10. Koyama, J., Ogura, T. and Tagahara, K., Anthraquinones from Galium spurium. Phytochemistry, 33, 1540-1542 (1993) https://doi.org/10.1016/0031-9422(93)85131-A
  11. Koyama, J., Okatani, T., Tagahara, K., Kouno, I. and Irie, H., Anthaquinones from Damnacanthus indicus. Phytochemistry, 31, 709-710 (1992) https://doi.org/10.1016/0031-9422(92)90070-7
  12. Kuiper J. and Labadie R. (1981) Polyploid complexes within the genus Galium. Planta Med. 42, 390-397 https://doi.org/10.1055/s-2007-971661
  13. Lee, S. W., Kuo, S. C., and Chen, Z. T., Novel Anthraquinones from Damnacanthus indicus J. Nat. Prod., 57, 1313-1315 (1994) https://doi.org/10.1021/np50111a025
  14. Leticia, J., El-Naggar, S., and Jack, L. B., Iridoids, A. review. Lloydia, 43, 649-707 (1980)
  15. Lorian, V., 'Antibiotics in Laboratory Medicine'., William and Wilkin, London UK. (1980)
  16. Maya, M., Nedjalka, H., Mincho, A. and Simeon, P., Iridoid glucoside from Balkan Endemics of the Galium incurvum group (Rubiaceae). Z. Naturforsch., 51, 286 (1996). Through C.A. 125, 163313t (1996)
  17. Miller, R. G., 'Simultaneous Statistical Inferenes', MC Graw-Hill Book Company, New York. (1966)
  18. Okuyama, E., Sato, K., and Yoshihira, K., 2 Ethoxycarbonyl 1 hydroxyanthraquinone from Rubia okane. Phytochem, 29, 3973-3975 (1990) https://doi.org/10.1016/0031-9422(90)85382-P
  19. Plowden, C C, 'A Manual of Plant Names', George Allen and Unuvin, Ltd., p. 43 (1968)
  20. Sabri, N. N., El Din, A. A., El Sebakhy, N. A., and Abou El-Ela, M. A., Flavonoids of Crucianella maritima L. Alex. J. Pharm. Sci., 11, 18-20 (1988)
  21. Tackholm, V., 'Students Flora of Egypt', 2$^{nd}$ Ed., Cairo University, Egypt., p. 418 (1974)
  22. Thomson, R. H., 'Naturally Occurring Quinones', 2$^{nd}$ Ed. Academic Press, London, New York (1971)
  23. Willis, J. C, 'A Dictionary of the Flowering Plants and Ferns', 8$^{th}$ Ed., Cambridge University Press, Cambridge, New York and Sydney (1988)
  24. Yang L., Xu P., Chen Z. and Liu G. The anthraquinones of Phynchotechum vestitum, Phytochem., 47, 315-316 (1998) https://doi.org/10.1016/S0031-9422(97)00561-X