• Title/Summary/Keyword: Plant pathogens

Search Result 852, Processing Time 0.029 seconds

Study on the Plant Pathological Anatomy Associated with Mycoplasma Witches'-Broom Disease in Sweet Potato (Mycoplasma 에 기인(起因)한 고구마 위축병(萎縮病)의 병태해부학적(病態解剖學的) 연구(硏究))

  • So, In-Yung
    • Applied Microscopy
    • /
    • v.5 no.1
    • /
    • pp.9-19
    • /
    • 1975
  • In order to clarify the mecahnism of histological barriers to pathogens of witches' broom diseased in sweet potatoes, this experiment has been conducted to observe the relationship between pathological characters and the transfer of mycoplasmae in the shoot apex. The material used the experiment is the sweet potato (Ipomoea batatas (L.) Lamm. Suwon 147). In the experiment regarding of mycoplasmae, the upper limit zone of transfer of mycoplasmae is examined by way of the process of free stock and the shoot apex of a infected part in nature, observed in the culture of each part of the diseased plant which is cut to a certain length. The pathological change pattern of tissues infected with mycoplasmae has been observed under the light and electron microscopes. As a result of this experiment, the following conclusion was arrived at. 1. It has been ascertained that the mycoplasmae are not existent in a promeristem and primary meristem zone from the meristem dome, and is existent in the lower part of the vascular differentiation zone, after which differential tissues the mycoplasmae become progressively enlarged, and before which undifferential tissues it become progressively immatured and diminished in size. 2. It can be suggested that mycoplasmae may not be existed in the shoot meristem, be cause the passing structures such as sieve area and plasmodesma which can be pass ed immatured mycoplasmae is undifferentiated. 3. In the tissue culture, free stock can be obtained in the zone between 1.0-1.5mm of the shoot apex, while it cannot in the 2.0-3.0mm zone, because of infection by mycoplasmae. It is suggested that immature mycoplasmae may be diffused according to temperature ($28{\pm}1^{\circ}C$) in tissue culture process.

  • PDF

Control of Spinach Downy Mildew Using Essential Oil, Antagonistic Bacteria, Cooking Oil and Egg Yolk Mixture (식물정유, 길항세균 및 난황유를 이용한 시금치 노균병 방제)

  • Lee, Jung-Han;Jeong, Sung-Woo;Chun, Sung-Sik;Kang, Shin-Kwon;Choi, Jun-Min;Lim, Chae-Shin;Ko, Hack-Ryong;Lee, Kwang-Soo;Chung, Nam-Jun;Bae, Dong-Won
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • In this study, we evaluated environmental-friendly disease control methods using essential oils, antagonistic bacteria, or cooking oil and egg yolk mixture (COY). Among the five tested plant essential oils, Eucalyptus approximans oil shown the highest effect to control of the downy mildew disease (60% disease control value). Interestingly enough, well known antagonistic bacteria against various fungal pathogens were appeared lower control efficiency than plant essential oils. In field conditions, the cooking oil and yolk mixture (COY) treatments shown significantly decreased the downy mildew incidence with 0.3% (disease conttrol value 84%) and 0.5% concentration (disease control value 91%). Our findings suggest that the COY has a great potential as the eco-friendly downy mildew disease control formulation.

Weather Effect and Response of Promoted Rice Varieties on Fusarium Infection in Paddy Field (벼 붉은곰팡이병 감염에 대한 기상조건의 영향과 장려품종의 반응)

  • Lee, Theresa;Jang, Ja Yeong;Kim, Jeomsoon;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Fusarium infection rate of the paddy rice grain after harvest seemed to be influenced by the average temperature from late July (before heading) to the end of September (during ripening). In case of 2010 and 2013 in which average temperature of the same period was similar, Fusarium infection was related to cumulative precipitation, cumulative precipitation days, and precipitation durations over two days. The distribution ratio of Fusarium species complex isolated from paddy rice grains after harvest was 57% in 2010 and 45% in 2013 for Fusarium graminearum species complex (FGSC), 35% and 50% for Fusarium incarnatum-equiseti species complex, and 8% and 5% for Fusarium fujikuroi species complex (FFSC). The distribution ratios of FGSC and FFSC were higher in 2010 than 2013. Among the total 26 promoted rice varieties, the 'Mihyang' showed resistant response against the natural infection with Fusarium species belonging to FGSC and the varieties of 'Nampyeong', 'Hi-ami'and 'Younghojinmi' showed resistant response against the natural infection with overall Fusarium pathogens. Majority of the promoted rice varieties could not be classified for resistance or susceptibility. These results are valuable as basic data to determine the resistance and susceptibility of rice variety against Fusarium spp. infection in the field.

Outbreak of Fire Blight of Apple and Pear and Its Characteristics in Korea in 2019 (2019년 국내 사과와 배 화상병 대발생과 그 특징)

  • Ham, Hyeonheui;Lee, Kyong Jae;Hong, Seong Jun;Kong, Hyun Gi;Lee, Mi-Hyun;Kim, Hyun-Ran;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • To find out the cause of the fire blight outbreak in apples and pears of Korea in 2019, we investigated disease appearing situation of thirty fire blight infected orchards, and interviewed farmers to determine the cultivation characteristics. Fire blight occurred mostly in orchards that had infected more than 2 years before. The cause of this were as follows: farmers did not know the symptoms of the disease properly. It is presumed that it has spread from the first occurrence to the surrounding orchards by flower-visiting insects or farmers and to a short distance or a long distance by the same cultivator or co-farmer. These series of processes repeated in the newly spreading area, and then disease reports increased as farmers became aware of fire blight. To minimize the spread of fire blight in Korea, it suggested that thorough education of farmers for early diagnosis and quantitative detection technology that can diagnose even in no symptom showing plants. And chemical or biological spraying systems suitable for domestic cultivation methods, which are producing large fruits, and molecular epidemiological studies of pathogens.

Development of PCR-based markers specific to Solanum brevicaule by using the complete chloroplast genome sequences of Solanum species (엽록체 전장유전체 비교를 통한 PCR 기반의 Solanum brevicaule 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Solanum brevicaule is one of the tuber-bearing wild Solanum species. Because of its resistance to several important pathogens infecting potatoes during cultivation, it can be used for potato breeding. However, the fact that S. brevicaule used in this study has an EBN value of two causes the sexual reproduction barriers between the species and cultivated potatoes. In this study, specific markers for discriminating S. brevicaule from other Solanum species were developed on the basis of the results of sequence alignments with the whole chloroplast genomes of S. brevicaule and seven other Solanum species. The chloroplast genome of S. brevicaule was completed by next-generation sequencing technology described in other recent studies. The total sequence length of the chloroplast genome of S. brevicaule is 155,531 bp. Its structure and gene composition are similar to those of other Solanum species. Phylogenetic analysis revealed that S. brevicaule was closely grouped with other Solanum species. BLASTN search showed that its genome sequence had 99.99% and 99.89% identity with those of S. spegazzinii (MH021562) and S. kurtzianum (MH021495), respectively. Sequence alignment identified 27 SNPs that were specific to S. brevicaule. Thus, three PCR-based CAPS markers specific to S. brevicaule were developed on the basis of these SNPs. This study will facilitate in further studies on evolutionary and breeding aspects in Solanum species.

Biological Control of White Rot in Apple Using Bacillus spp. (Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제)

  • Ha-Kyoung Lee;Jong-Hwan Shin;Seong-Chan Lee;You-Kyoung Han
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.390-398
    • /
    • 2023
  • Apple white rot, caused by Botryosphaeria dothidea, is one of the important diseases in Korea. B. dothidea can cause pre- and postharvest decay on apple fruit as well as canker and dieback of apple trees. In this study, we isolated bacteria from the trunk of apple trees and tested their antagonistic activity against B. dothidea. Five bacterial isolates (23-168, 23-169, 23-170, 23-172, and 23-173) were selected that were most effective at inhibiting the mycelial growth of the pathogens. The isolate 23-172 was identified as Bacillus amyloliquefaciens and four isolates 23-168, 23-169, 23-170, and 23-173 were identified as Bacillus velezensis by RNA polymerase beta subunit (rpoB) and DNA gyraseA subunit (gyrA) gene sequencing. All isolates showed strong antagonistic activity against B. dothidiea as well as Colletotrichum fructicola and Diaporthe eres. All isolates exhibited cellulolytic, proteolytic and phosphate solubilizing activities. In particular, two isolates 23-168, 23-169 were shown to significantly reduce the size of white rot lesions in pretreated apple fruits. These results will provide the basis for the development of a fungicide alternative for the control of white rot of apple.

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.

Monitoring for the Resistance of Botrytis cinerea Causing Gingseng Gray Mold to Procymidone and Its Multiple resistance with the Mixture of Carbendazim/Diethofencarb (인삼 잿빛곰팡이병균의 procymidone에 대한 감수성 변화와 carbendazim/diethofencarb 합제와의 다중 저항성)

  • Lee, Seon-Wook;Kim, Joo-Hyung;Min, Ji-Young;Bae, Young-Seok;Kim, Heung-Tae
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.170-176
    • /
    • 2007
  • Effects of fungicides on the mycelial growth of Botrytis cinerea isolated from ginseng leaves were investigated by an agar dilution method. By using a agar dilution method, it was investigated the effect of fungicides, procymidone, carbendazim and the mixture with both of carbendazim and diethofencarb, on the mycelial growth of Botrytis cinerea isolates, which were isolated from infected leaves of ginseng in 2005 and 2006. With MIC (minimum inhibiton concentration) of procymidone against B. cinerea, pathogens were divided into two groups. While one showed the low MIC between 0.8 and $4.0{\mu}g/ml$, the other showed higher MIC above $20{\mu}g/ml$. In terms of the inhibition ratio of mycelial growth at the indicated concentration of procymidone, isolates of B. cinerea were divided into three groups; the sensitive, the intermediate resistant, and the resistant group. Each group was differentiated by $EC_{50}$; the sensitive group showed below $2.0{\mu}g/ml$, the intermediate resistant group between 2.0 to $5.0{\mu}g/ml$, and resistant group above $5.0{\mu}g/ml$. Compared with the ratio of resistant isolates of B. cinerea in 2005, the ratio in 2006 increased from 19.3% to 27.5%. Furthermore, the average $EC_{50}$ value of them increased from $10.0{\mu}g/ml$ in 2005 to $237.3{\mu}g/ml$ in 2006. The ratio of isolates showing the multiple resistance between procymidone and carbendazim was 40.2%, whereas the ratio was 4.0% showing the multiple resistance in the mixture.

Current Status and Future Prospect of Plant Disease Forecasting System in Korea (우리 나라 식물병 발생예찰의 현황과 전망)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.84-91
    • /
    • 2002
  • Disease forecasting in Korea was first studied in the Department of Fundamental Research, in the Central Agricultural Technology Institute in Suwon in 1947, where the dispersal of air-borne conidia of blast and brown spot pathogens in rice was examined. Disease forecasting system in Korea is operated based on information obtained from 200 main forecasting plots scattered around country (rice 150, economic crops 50) and 1,403 supplementary observational plots (rice 1,050, others 353) maintained by Korean government. Total number of target crops and diseases in both forecasting plots amount to 30 crops and 104 diseases. Disease development in the forecasting plots is examined by two extension agents specialized in disease forecasting, working in the national Agricul-tural Technology Service Center(ATSC) founded in each city and prefecture. The data obtained by the extension agents are transferred to a central organization, Rural Development Administration (RDA) through an internet-web system for analysis in a nation-wide forecasting program, and forwarded far the Central Forecasting Council consisted of 12 members from administration, university, research institution, meteorology station, and mass media to discuss present situation of disease development and subsequent progress. The council issues a forecasting information message, as a result of analysis, that is announced in public via mass media to 245 agencies including ATSC, who informs to local administration, the related agencies and farmers for implementation of disease control activity. However, in future successful performance of plant disease forecasting system is thought to be securing of excellent extension agents specialized in disease forecasting, elevation of their forecasting ability through continuous trainings, and furnishing of prominent forecasting equipments. Researches in plant disease forecasting in Korea have been concentrated on rice blast, where much information is available, but are substan-tially limited in other diseases. Most of the forecasting researches failed to achieve the continuity of researches on specialized topic, ignoring steady improvement towards practical use. Since disease forecasting loses its value without practicality, more efforts are needed to improve the practicality of the forecasting method in both spatial and temporal aspects. Since significance of disease forecasting is directly related to economic profit, further fore-casting researches should be planned and propelled in relation to fungicide spray scheduling or decision-making of control activities.

Antifungfal Activity Against Plant Pathogenic Fungi on Insect Enterobacteriaceae (식물병원성 곰팡이에 대한 곤충장내세균의 항균활성)

  • Oh, San Na;Seo, Mi Ja;Youn, Young Nam;Yu, Yong Man
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2015
  • In order to investigating the effects of antifungal activity of intestinal bacteria obtained from insect, it was identified these bacteria isolated from the gut. In this result, total 49 isolates of intestinal bacteria were identified from 10 kinds of insect species. It was that 4 isolates including Cedecea sp. from Nesidiocoris tenuis, 3 isolates including Enterobacter sp. from Odontotaenius disjunctus, 4 isolates including Acinetobacter sp. from Reticulitermes speratus, 4 isolates including Clavibacter sp. from Riptortus clavatus, 11 isolates including Bacillus sp. from Lema decempunctata, 3 isolates including Enterococcus sp. from Henosepilachna vigintioctopunctata 2 isolates including Staphylococccus sp. from Harmonia axyridis, 5 isolates including Enterobacter asburiae from Popillia mutans, 7 isolates including Aeromonas sp. from Hydrophilus acuminatus, and 7 isolates including Brucella sp. from Anomala octiescostata. In order to investigating antifungal activity against plant-pathogenic fungi, Altanaria solani, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani and Selerotinia sclerotiorum were dual cultured with each 49 gut enterobacteriaceae. As these results showed that many isolates have the antifungal activities including 26 isolates against A. solani, 6 isolates against B. cinerea, 13 isolates against C. gloeosporioides, 11 isolates against F. oxysporum, 17 isolates P. capsici, 2 isolates against R. solani and 2 isolates against S. sclerotiorum. Pseudomonas aeruginosa was showed strong antifungal activity against all of tested plant pathogens. It might be taken a potential for application against plant-pathogenic fungi with useful control agent.