DOI QR코드

DOI QR Code

Antifungfal Activity Against Plant Pathogenic Fungi on Insect Enterobacteriaceae

식물병원성 곰팡이에 대한 곤충장내세균의 항균활성

  • Oh, San Na (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Seo, Mi Ja (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 오산나 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2015.02.09
  • Accepted : 2015.03.13
  • Published : 2015.03.31

Abstract

In order to investigating the effects of antifungal activity of intestinal bacteria obtained from insect, it was identified these bacteria isolated from the gut. In this result, total 49 isolates of intestinal bacteria were identified from 10 kinds of insect species. It was that 4 isolates including Cedecea sp. from Nesidiocoris tenuis, 3 isolates including Enterobacter sp. from Odontotaenius disjunctus, 4 isolates including Acinetobacter sp. from Reticulitermes speratus, 4 isolates including Clavibacter sp. from Riptortus clavatus, 11 isolates including Bacillus sp. from Lema decempunctata, 3 isolates including Enterococcus sp. from Henosepilachna vigintioctopunctata 2 isolates including Staphylococccus sp. from Harmonia axyridis, 5 isolates including Enterobacter asburiae from Popillia mutans, 7 isolates including Aeromonas sp. from Hydrophilus acuminatus, and 7 isolates including Brucella sp. from Anomala octiescostata. In order to investigating antifungal activity against plant-pathogenic fungi, Altanaria solani, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani and Selerotinia sclerotiorum were dual cultured with each 49 gut enterobacteriaceae. As these results showed that many isolates have the antifungal activities including 26 isolates against A. solani, 6 isolates against B. cinerea, 13 isolates against C. gloeosporioides, 11 isolates against F. oxysporum, 17 isolates P. capsici, 2 isolates against R. solani and 2 isolates against S. sclerotiorum. Pseudomonas aeruginosa was showed strong antifungal activity against all of tested plant pathogens. It might be taken a potential for application against plant-pathogenic fungi with useful control agent.

국내에서 서식하는 10종의 곤충에서 분리한 49균주의 장내세균으로 7종의 주요한 식물병원성 곰팡이에 대하여 항균활성을 검토하였다. 49개의 균주들은 담배장님노린재(Nesidiocoris tenuis)에서 Cedecea sp. 포함 4균주, 사슴벌레붙이(Odontotaenius disjunctus)에서 Enterobacter sp. 포함 3균주, 흰개미(Reticulitermes speratus)에서 Acinetobacter sp. 포함 4균주, 톱다리개미허리노린재(Riptortus clavatus)에서 Clavibacter sp. 포함 4균주, 열점박이잎벌레(Lema decempunctata)에서 Bacillus sp. 포함 11균주, 이십팔점박이무당벌레(Henosepilachna vigintioctopunctata)에서 Enterococcus sp. 포함 3균주, 무당벌레(Harmonia axyridis)에서 Staphylococccus sp. 포함 2균주, 콩풍뎅이(Popillia mutans)에서 Enterobacter asburiae 균을 포함한 5균주, 물땡땡이(Hydrophilus acuminatus)에서는 Aeromonas sp. 포함 7균주가 팔맥풍뎅이(Anomala octiescostata)에서는 Brucella sp. 를 포함한 7균주 등이 분리, 동정되었다. 이 49균주를 항균활성을 측정하기 위해 7종의 식물병원성 곰팡이인 토마토겹둥근무늬병(A. solani), 고추탄저병(C. gloeosporioides), 잿빛곰팡이병(B. cinerea), 시들음병(F. oxysporum), 고추역병(P. capsici), 벼문고병(R. solani), 상추균핵병(S. sclerotiorum)과 함께 PDA배지에서 대치 배양한 결과, A. solani에 대하여 항균활성을 갖는 26균주, B. cinerea에 항균활성을 갖는 6균주, C. gloeosporioides에 항균활성을 갖는 13균주, F. oxysporum에 항균활성을 갖는 11균주, P. capsici에 항균활성을 갖는 17균주, R. solani에 항균활성을 갖는 2균주와 S. sclerotiorum에 대하여 항균활성을 갖는 2균주로 나타났다. 항균활성의 결과 7종의 모든 식물병원성 곰팡이에 항균활성을 갖는 Pseudomonas aeruginosa를 선발하였다. 생물활성은 고추에 직접 분무 및 접종 처리하였을 때 고추 탄저병균(C. gloeosporioides)에 대하여 항균효과가 뚜렷하게 나타나는 것으로 확인되었다.

Keywords

References

  1. Akhurst, R. J. (1982) Antibiotic Activity of Xenorhabdus spp., Bacteria Symbiotically Associated with Insect Pathogenic Nematodes of the Families Heterorhabditidae and Steinernematidae. J. Gen. Microbiolo. 128:3061-3065.
  2. Anand, A. A. P., S. J. Vennison, S. G. Sankar, D. I. G. Prabhu, P. T. Vasan, T. Raghuraman, C. J. Geoffrey and S. E. Vendan (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J. Insect Sci. 10:107.
  3. Appel, H. M. (1994) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals and insect pathogens. Insect-Plant Interactions. 5:209-221.
  4. Baumann, P., L. Baumann, C. Y. Lai, D. Rouhbakhsh, N. A. Moran and M. A. Clark (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Ann. Rev. Microbiol. 49:55-94. https://doi.org/10.1146/annurev.mi.49.100195.000415
  5. Bignell, D. E. and P. Eggleton (1995) On the elevated intestinal pH of higher termites (Isoptera, Termitidae). Insect Soc. 42: 57-69. https://doi.org/10.1007/BF01245699
  6. Bourtzis, K. and T. A. Miller (2003) Insect symbiosis. CRC Press, Boca Raton, FL.
  7. Bourtzis, K. and T. A. Miller (2006) Insect symbiosis II. CRC Press, Boca Raton, FL.
  8. Bracke, J. W., D. L. Cruden and A. J. Markovetz (1979) Intestinal microbial flora of the American cockroache Periplaneta americana L. Appl. Environ. Microbiol. 38: 945-955.
  9. Breznek, J. A. (1984) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In Invertebrate- Microbial Interaction (J. M. Anderson, A. D. M Rayer, and D. W. H. Walton, Eds.). Cambridge University Press, Cambridge, U. K. pp. 173-204.
  10. Buchner, P. (1965) Endosymbiosis of animals with plant microorganisms. In terscience, Troy, NY.
  11. Dillon, R. J. and V. M. Dillon (2004) The gut bactera of insecrs: Nonpathogenic Interactions. Annu. Rev. Entomol. 49:71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  12. Douglas, A. E. (1998) Mycetocyte symbiosis in insect. Biol. Rev. 64:409-434.
  13. Douglas, A. E. (1998) Nutritional interactions in insectmicrobial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43:17-37. https://doi.org/10.1146/annurev.ento.43.1.17
  14. Feng, W., X. Q. Wang, W. Z. Zhou, G. Y. Liu and T. J. Wan (2011) Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J. Insect Sci. 11:135.
  15. Genta, F. A., R. J. Dillon, W. R. Terra and C. Ferreira (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiolo. 52:593-601. https://doi.org/10.1016/j.jinsphys.2006.02.007
  16. Ishikawa, H. (1989) Biochemical and molecular aspects of endosymbiosis in insect. Int. Rev. Cytol. 116:1-45. https://doi.org/10.1016/S0074-7696(08)60637-3
  17. Ji, D. J., Y. K. Yi, G. H. Kang, Y. H Choi, P. K. Kim, N. I. Baek and Y. G. Kim (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett. 239:241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  18. Kikuchi, Y. (2009) Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24:195-204. https://doi.org/10.1264/jsme2.ME09140S
  19. Lee, J. Y., S. S. Moon and B. K. Hwang (2003) Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag Sci. 59:872-882. https://doi.org/10.1002/ps.688
  20. Margulis, L. and R. Fester (1991) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge, MA.
  21. Miura, T., C. Braendle, A. shingleton, G. Sisk, S. Kambhampati and D. L. Stern (2003) A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphonpisum (Hemiptera:Aphidoidea). J. Exp. Zool. B 295: 59-21.
  22. Moran, N. A. (2006) Symbiosis. Curr. Biol. 16:R886-R871.
  23. Munson, M. A., P. Baumann and M. G. Kinsey (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon Consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacterol. 41:566-568. https://doi.org/10.1099/00207713-41-4-566
  24. Paul, N. C. (2012) Diversity and Biological Control Activity of Endophytes from Chili Pepper (Capsicum annuum L.) in Korea. PH. Thesis. Chungnam National University, Daejeon, Korea.
  25. Ruby, E., B. Henderson and M. McFall-Ngai (2004) We get by with a little help from our (little) friends. Science 303:1305-1307. https://doi.org/10.1126/science.1094662
  26. Steinhaus, E. A. (1960) The important of environment factor in the insect microbe ecosystem. Bacteriol. Rev. 24:365- 373.
  27. Walker, A. J., D. M. Glen and P. R. Shewry (1999) Bacteria associate with the digestive system of the slug Deroceras reticulatum are not required for protein digestion. Soil Biol. Biochem. 31:1387-1394. https://doi.org/10.1016/S0038-0717(99)00054-1
  28. Werren, J. H. (1997) Biology of Wolbachia. Ann. Rev. Entomol. 42:587-609. https://doi.org/10.1146/annurev.ento.42.1.587

Cited by

  1. (L.) pp.1526498X, 2017, https://doi.org/10.1002/ps.4726
  2. Midgut bacterial diversity of a leaf-mining beetle, Dactylispa xanthospila (Gestro) (Coleoptera: Chrysomelidae: Cassidinae) vol.9, pp.None, 2021, https://doi.org/10.3897/bdj.9.e62843