Browse > Article
http://dx.doi.org/10.7585/kjps.2015.19.1.71

Antifungfal Activity Against Plant Pathogenic Fungi on Insect Enterobacteriaceae  

Oh, San Na (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Seo, Mi Ja (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Youn, Young Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
The Korean Journal of Pesticide Science / v.19, no.1, 2015 , pp. 71-79 More about this Journal
Abstract
In order to investigating the effects of antifungal activity of intestinal bacteria obtained from insect, it was identified these bacteria isolated from the gut. In this result, total 49 isolates of intestinal bacteria were identified from 10 kinds of insect species. It was that 4 isolates including Cedecea sp. from Nesidiocoris tenuis, 3 isolates including Enterobacter sp. from Odontotaenius disjunctus, 4 isolates including Acinetobacter sp. from Reticulitermes speratus, 4 isolates including Clavibacter sp. from Riptortus clavatus, 11 isolates including Bacillus sp. from Lema decempunctata, 3 isolates including Enterococcus sp. from Henosepilachna vigintioctopunctata 2 isolates including Staphylococccus sp. from Harmonia axyridis, 5 isolates including Enterobacter asburiae from Popillia mutans, 7 isolates including Aeromonas sp. from Hydrophilus acuminatus, and 7 isolates including Brucella sp. from Anomala octiescostata. In order to investigating antifungal activity against plant-pathogenic fungi, Altanaria solani, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani and Selerotinia sclerotiorum were dual cultured with each 49 gut enterobacteriaceae. As these results showed that many isolates have the antifungal activities including 26 isolates against A. solani, 6 isolates against B. cinerea, 13 isolates against C. gloeosporioides, 11 isolates against F. oxysporum, 17 isolates P. capsici, 2 isolates against R. solani and 2 isolates against S. sclerotiorum. Pseudomonas aeruginosa was showed strong antifungal activity against all of tested plant pathogens. It might be taken a potential for application against plant-pathogenic fungi with useful control agent.
Keywords
enterobacteriaceae; plant-pathogenic fungi; Pseudomonas aeruginosa; antifungal activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Margulis, L. and R. Fester (1991) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge, MA.
2 Miura, T., C. Braendle, A. shingleton, G. Sisk, S. Kambhampati and D. L. Stern (2003) A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphonpisum (Hemiptera:Aphidoidea). J. Exp. Zool. B 295: 59-21.
3 Moran, N. A. (2006) Symbiosis. Curr. Biol. 16:R886-R871.
4 Munson, M. A., P. Baumann and M. G. Kinsey (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon Consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacterol. 41:566-568.   DOI
5 Paul, N. C. (2012) Diversity and Biological Control Activity of Endophytes from Chili Pepper (Capsicum annuum L.) in Korea. PH. Thesis. Chungnam National University, Daejeon, Korea.
6 Ruby, E., B. Henderson and M. McFall-Ngai (2004) We get by with a little help from our (little) friends. Science 303:1305-1307.   DOI
7 Steinhaus, E. A. (1960) The important of environment factor in the insect microbe ecosystem. Bacteriol. Rev. 24:365- 373.
8 Walker, A. J., D. M. Glen and P. R. Shewry (1999) Bacteria associate with the digestive system of the slug Deroceras reticulatum are not required for protein digestion. Soil Biol. Biochem. 31:1387-1394.   DOI
9 Werren, J. H. (1997) Biology of Wolbachia. Ann. Rev. Entomol. 42:587-609.   DOI
10 Akhurst, R. J. (1982) Antibiotic Activity of Xenorhabdus spp., Bacteria Symbiotically Associated with Insect Pathogenic Nematodes of the Families Heterorhabditidae and Steinernematidae. J. Gen. Microbiolo. 128:3061-3065.
11 Anand, A. A. P., S. J. Vennison, S. G. Sankar, D. I. G. Prabhu, P. T. Vasan, T. Raghuraman, C. J. Geoffrey and S. E. Vendan (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J. Insect Sci. 10:107.
12 Appel, H. M. (1994) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals and insect pathogens. Insect-Plant Interactions. 5:209-221.
13 Baumann, P., L. Baumann, C. Y. Lai, D. Rouhbakhsh, N. A. Moran and M. A. Clark (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Ann. Rev. Microbiol. 49:55-94.   DOI
14 Bignell, D. E. and P. Eggleton (1995) On the elevated intestinal pH of higher termites (Isoptera, Termitidae). Insect Soc. 42: 57-69.   DOI
15 Bourtzis, K. and T. A. Miller (2003) Insect symbiosis. CRC Press, Boca Raton, FL.
16 Bourtzis, K. and T. A. Miller (2006) Insect symbiosis II. CRC Press, Boca Raton, FL.
17 Bracke, J. W., D. L. Cruden and A. J. Markovetz (1979) Intestinal microbial flora of the American cockroache Periplaneta americana L. Appl. Environ. Microbiol. 38: 945-955.
18 Breznek, J. A. (1984) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In Invertebrate- Microbial Interaction (J. M. Anderson, A. D. M Rayer, and D. W. H. Walton, Eds.). Cambridge University Press, Cambridge, U. K. pp. 173-204.
19 Dillon, R. J. and V. M. Dillon (2004) The gut bactera of insecrs: Nonpathogenic Interactions. Annu. Rev. Entomol. 49:71-92.   DOI
20 Buchner, P. (1965) Endosymbiosis of animals with plant microorganisms. In terscience, Troy, NY.
21 Douglas, A. E. (1998) Mycetocyte symbiosis in insect. Biol. Rev. 64:409-434.
22 Douglas, A. E. (1998) Nutritional interactions in insectmicrobial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43:17-37.   DOI
23 Feng, W., X. Q. Wang, W. Z. Zhou, G. Y. Liu and T. J. Wan (2011) Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J. Insect Sci. 11:135.
24 Genta, F. A., R. J. Dillon, W. R. Terra and C. Ferreira (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiolo. 52:593-601.   DOI
25 Ishikawa, H. (1989) Biochemical and molecular aspects of endosymbiosis in insect. Int. Rev. Cytol. 116:1-45.   DOI
26 Ji, D. J., Y. K. Yi, G. H. Kang, Y. H Choi, P. K. Kim, N. I. Baek and Y. G. Kim (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett. 239:241-248.   DOI
27 Kikuchi, Y. (2009) Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24:195-204.   DOI
28 Lee, J. Y., S. S. Moon and B. K. Hwang (2003) Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag Sci. 59:872-882.   DOI