• Title/Summary/Keyword: Plant diseases

Search Result 1,569, Processing Time 0.027 seconds

Introduction of List of Plant Diseases in Korea 6.1st Edition (2023 Revised Version) (한국식물병명목록 6.1판(2023 개정본))

  • Seon-Hee Kim;Jaehyuk Choi;Young-Joon Choi;Byeong-Yong Park;Su-Heon Lee;Gyoung Hee Kim;Hyun Gi Kong;Donggun Kim;Soonok Kim;Youngho Kim;Chang-Gi Back;Hee-Seong Byun;Jang Kyun Seo;Jun Myoung Yu;Ju-Yeon Yoon;Dong-Hyeon Lee;Seung-Yeol Lee;Seungmo Lim;Yongho Jeon;Jaeyong Chun;Insoo Choi;In-Young Choi;Hyo-Won Choi;Jin Sung Hong;Seung-Beom Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.331-344
    • /
    • 2023
  • More than a year has passed after the 6th edition of 'List of Plant Diseases in Korea (LPDK)' was published in April 2022. The 6.1st edition (2023) of List of Plant Diseases in Korea was made by correcting errors found in the 6th edition of list and adding new diseases reported after the 6th edition. There were 397 corrections from the 6th edition, most of which were simple spelling errors or minor issues. However, 12 diseases were deleted due to duplication or unclear literature proof, and 2 diseases had their diseases' common names changed. We added 158 diseases that were reported before 2021 but not included in the 6th edition, or reported after the 6th edition. After all, 146 diseases were added to the 6,534 diseases in the 6th edition, resulting in a total of 6,680 diseases in the 6.1st edition. Thirty host taxa were also added, increasing the number from 1,390 in the 6th edition to 1,420 in the 6.1st edition. Pathogens were also added to 62 taxa, from 2,400 in the 6th edition, bringing the total to 2,462 taxa in the 6.1st edition. Ultimately, the 6.1st edition (2023) of 'The List of Plant Diseases in Korea' contains 6,680 diseases caused by pathogens of 2,462 taxa on 1,420 hosts. The 6.1st edition is not printed as a book, but is provided through the online 'List of Plant Diseases in Korea' (https://genebank. rda.go.kr/kplantdisease.do).

Genetic analysis of env and gag gene fragments of bovine leukemia virus identified in cattle from Korea

  • Kim, Yeon-Hee;Lee, Eun-Yong;Oem, Jae-Ku;Kim, Seong-Hee;Lee, Myoung-Heon;Lee, Kyoung-Ki;Park, Se-Chang
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.53-56
    • /
    • 2015
  • Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. This study was conducted to clarify the molecular characteristics of BLVs obtained from a specific region in Korea. Proviral BLVs were detected in anti-BLV antibody-positive blood samples by PCR. Env and gag fragments were sequenced and compared to previously published reference sequences. Analysis of the env gene sequence revealed that the YI strain was highly similar to genotype 1, including United States and Japanese strains. The gag gene sequence had the highest degree of similarity with a Japanese strain.

Incidence Rates of Major Diseases of Kiwiberry in 2015 and 2016

  • Kim, Gyoung Hee;Kim, Deok Ryong;Park, Sook-Young;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.434-439
    • /
    • 2017
  • Incidence rates of diseases in kiwiberry orchards were investigated monthly from late June to late September in Gwangyang and Boseong in 2015 and 2016. The impact of postharvest fruit rot was investigated during ripening after harvest. Bacterial canker was only observed on one single tree in 2015, but black rot, powdery mildew, leaf spot and blight, and postharvest fruit rot diseases were problematic throughout the study period in both 2015 and 2016. Incidence rates of the diseases varied with kiwiberry cultivar, region and sampling time. Incidence rates of powdery mildew, leaf spot and blight diseases increased significantly during the late growing stages near fruit harvest, while black rot peaked in late August. Incidence rate of postharvest fruit rot on fruit without fruit stalks was less than half of fruit with fruit stalks, regardless of kiwiberry cultivars. Among the four cultivars, Mansu was relatively resistant to black rot and postharvest fruit rot diseases. In our knowledge, this is the first report of various potential pathogens of kiwiberry in Korea.

Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants

  • Vu, Nguyen Trung;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.204-217
    • /
    • 2020
  • In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Development of an attenuated vaccine strain from a korean respiratory type infectious bronchitis virus (한국호흡기형 닭전염성기관지염 생독백신주의 작성)

  • Choi, Kang-Seuk;Jeon, Woo-Jin;Lee, Eun-Kyoung;Kye, Soo-Jeong;Park, Mi-Ja;Kwon, Jun-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • An attenuated vaccine strain AVR1/08 of Korean respiratory type of infectious bronchitis virus (IBV) was developed by 89th passages of IBV D85/06 strain in chicken eggs. The AVR1/08 strain had higher virus titer at least 20 times ($10^{1.3}$) than the parent virus D85/06 by egg inoculation method. The AVR1/08 strain had a single point mutation (S to Y) at position 56 of spike protein of IBV compared to parent virus IBV D85/06 strain. The mutation was observed consistently at viruses after 47th passage in chicken eggs. The AVR1/08 strain showed no virulence even after 6 passages in chickens and all chickens inoculated induced anti-IBV antibody 14 days after vaccination. The AVR1/08 strain had broad protective efficacy against QX type Korean nephropathogenic virus (Q43/06 strain), KM91 type Korean nephropathogenic virus (KM91 strain) and Korean respiratory virus (D85/06 strain). In contrast, Massachusetts (Mass) type attenuated vaccine strain H120 showed protection of 37.5 to 50% against these three viruses. Our results indicate that the AVR1/08 strain has potential as an attenuated vaccine effective in controlling IBVs circulating in Korea.

A Review of Hyperspectral Imaging Analysis Techniques for Onset Crop Disease Detection, Identification and Classification

  • Awosan Elizabeth Adetutu;Yakubu Fred Bayo;Adekunle Abiodun Emmanuel;Agbo-Adediran Adewale Opeyemi
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which makes it possible to simultaneously evaluate both physiological and morphological parameters. Among the physiological and morphological parameters are classifying healthy and diseased plants, assessing the severity of the disease, differentiating the types of pathogens, and identifying the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. Plant diseases cause significant economic losses in agriculture around the world as the symptoms of diseases usually appear when the plants are infected severely. Early detection, quantification, and identification of plant diseases are crucial for the targeted application of plant protection measures in crop production. Hence, this can be done by possible applications of hyperspectral sensors and platforms on different scales for disease diagnosis. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation, and identification of diseases, estimation of disease severity, and phenotyping of disease resistance of genotypes. This review provides a deeper understanding, of basic principles and implementation of hyperspectral sensors that can measure pathogen-induced changes in plant physiology. Hence, it brings together critically assessed reports and evaluations of researchers who have adopted the use of this application. This review concluded with an overview that hyperspectral sensors, as a non-invasive system of measurement can be adopted in early detection, identification, and possible solutions to farmers as it would empower prior intervention to help moderate against decrease in yield and/or total crop loss.

Diagnosis and Control of Major Leaf Diseases on Kiwifruit in Korea (키위 잎 주요 병 진단 및 방제)

  • Kim, Gyoung Hee;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Bacterial diseases such as bacterial canker and bacterial leaf spot and fungal diseases such as gray mold, powdery mildew, side rot and leaf spots are major diseases damaging leaves of kiwifruit in Korea. In this review, we summarize symptoms and epidemiological characteristics of the major bacterial and fungal leaf diseases of kiwifruit and propose proper control methods of the diseases that can be practically utilized at the farmers' kiwifruit orchards in order to prevent the diseases on the basis of our research works and field experiences and important research products conducted during the last three decades in the world.

Three New Loci of Insertion Element IS1112 in Chinese Strains of Xanthomonas oryzae pv. oryzae

  • Xie, Jiajian;Wang, Xifeng;Li, Feiwu;Peng, Yufa;Zhou, Guanghe
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Insertion sequence IS1112 is a repetitive element with a relatively high number of copies in Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice (Oryza sativa L.). Three new loci of IS1112 were identified in seven Chinese strains of Xoo using a single oligonucleotide primer J3; 5'-GCTCA GGTCAGGTGGCCTGG-3' by insertion-sequence-based polymerase chain reaction (IS-PCR). Among the three new loci of IS1112, two were located in the open-reading frame region of genes fhuA and cirA, which encode TonB-dependent receptors, and the third in ISXo2, another type of insertion sequence in Xoo genome. Three variants of IS1112 were identified in those three loci based on their sequence similarities: two were identical to IS1112a and IS1112b, reported in strain PXO86 from the Philippines, while the third was a new member of IS1112, defined as IS1112d. Inserting IS1112 in gene fhuA caused three bases, GGT, to be duplicated at the target site, but inserting it in gene cirA did not cause any duplication in the target site. The diversity of IS1112 sequence and insertion loci in Xoo genome and their potential effects are discussed.

Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases

  • Abdullahi, Adamu;Ahmad, Khairulmazmi;Ismail, Intan Safinar;Asib, Norhayu;Haruna, Osumanu;Abubakar, Abubakar Ismaila;Siddiqui, Yasmeen;Ismail, Mohd Razi
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.515-535
    • /
    • 2020
  • Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.