Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.05.2020.0077

Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases  

Abdullahi, Adamu (Department of Biological Sciences, Faculty of Science, Sokoto State University)
Ahmad, Khairulmazmi (Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia)
Ismail, Intan Safinar (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia)
Asib, Norhayu (Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia)
Haruna, Osumanu (Department of Crop Science, Faculty of Agriculture and Food Sciences, Bintulu Campus Sarawak, Universiti Putra Malaysia)
Abubakar, Abubakar Ismaila (Department of Integrated Science, School of Secondary Education (Science), Federal College of Education (Technical))
Siddiqui, Yasmeen (Institute of Plantation Studies (IKP), Universiti Putra Malaysia)
Ismail, Mohd Razi (Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia)
Publication Information
The Plant Pathology Journal / v.36, no.6, 2020 , pp. 515-535 More about this Journal
Abstract
Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.
Keywords
antimicrobial; ginger essential oils; nanotechnology; topical plant diseases;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Acharya, A. and Pal, P. K. 2020. Agriculture nanotechnology: translating research outcome to field applications by influencing environmental sustainability. NanoImpact 19:100232.   DOI
2 Agarwal, M., Walia, S., Dhingra, S. and Khambay, B. P. S. 2001. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag. Sci. 57:289-300.   DOI
3 Fan, S., Chang, J., Zong, Y., Hu, G. and Jia, J. 2018. GC-MS analysis of the composition of the essential oil from Dendranthema indicum var. Aromaticum using three extraction methods and two columns. Molecules 23:576.   DOI
4 Fitriady, M. A., Sulaswatty, A., Agustian, E., Salahuddin and Aditama, D. P. F. 2017. Steam distillation extraction of ginger essential oil: study of the effect of steam flow rate and time process. In: AIP Conference Proceedings, Vol. 1803, No. 1, ed. by S. Tursiloadi, p. 020032. AIP Publishing, Melville, NY, USA.
5 Lee, K. W., Omar, D., Abdan, K. and Wong, M. Y. 2016. Physiochemical characterization of nanoemulsion formulation of phenazine and their antifungal efficacy against Ganoderma boninense PER71 in vitro. Res. J. Pharm. Biol. Chem Sci. 7:3056-3066.
6 Kumari, A. J., Venkateshwarlu, G., Choukse, M. K. and Anandan, R. 2014. Effect of essential oil and aqueous extract of ginger (Zingiber officinale) on oxidative stability of fish oil-in-water emulsion. J. Food Process Technol. 6:412.
7 Lanzotti, V., Bonanomi, G. and Scala, F. 2013. What makes Allium species effective against pathogenic microbes? Phytochem. Rev. 12:751-772.   DOI
8 Lee, J.-E., Jung, M., Lee, S.-C., Huh, M.-J., Seo, S.-M. and Park, I.-K. 2020. Antibacterial mode of action of trans-cinnamaldehyde derived from cinnamon bark (Cinnamomum verum) essential oil against Agrobacterium tumefaciens. Pestic. Biochem. Physiol. 165:104546.   DOI
9 Li, Y.-X., Zhang, C., Pan, S., Chen, L., Liu, M., Yang, K., Zeng, X. and Tian, J. 2020. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT 117:108644.   DOI
10 Akhtar, M. S., Swamy, M. K. and Sinniah, U. R. 2019. Natural bio-active compounds. Vol. 1. Springer Nature Singapore Pte Ltd., Singapore. 589 pp.
11 Al-Hetar, M. Y., Zainal Abidin, M. A., Sariah, M. and Wong, M. Y. 2011. Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. J. Appl. Polym. Sci. 120:2434-2439.   DOI
12 Ali, B. H., Blunden, G., Tanira, M. O. and Nemmar, A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem. Toxicol. 46:409-420.   DOI
13 Alzoreky, N. S. and Nakahara, K. 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 80:223-230.   DOI
14 Anwer, M. K., Jamil, S., Ibnouf, E. O. and Shakeel, F. 2014. Enhanced antibacterial effects of clove essential oil by nanoemulsion. J. Oleo Sci. 63:347-54.   DOI
15 Arifullah, M., Vikram, P., Chiruvella, K. K., Shaik, M. M. and Abdullah Ripain, I. H. B. 2014. A review on Malaysian plants used for screening of antimicrobial activity. Annu. Res. Rev. Biol. 4:2088-2132.   DOI
16 Asfour, H. Z. 2018. Anti‑quorum sensing natural compounds. J. Microsc. Ultrastruct. 6:1-10.   DOI
17 Gomes, C., Moreira, R. G. and Castell-Perez, E. 2011. Poly(DLlactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 76:N16-N24.   DOI
18 Flores, F. C., de Lima, J. A., Ribeiro, R. F., Alves, S. H., Rolim, C. M. B., Beck, R. C. R. and da Silva, C. B. 2013. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia 175:281-286.   DOI
19 Ghormade, V., Deshpande, M. V. and Paknikar, K. M. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29:792-803.   DOI
20 Giannousi, K., Avramidis, I. and Dendrinou-Samara, C. 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 3:21743-21752.   DOI
21 Gonzalez Villa, T. and Veiga-Crespo, P. 2014. Antimicrobial compounds: current strategies and new alternatives. SpringerVerlag, Berlin, Germany. 316 pp.
22 Gurjar, M. S., Ali, S., Akhtar, M. and Singh, K. S. 2012. Efficacy of plant extracts in plant disease management. Agric. Sci. 3:425-433.   DOI
23 Saha, S., Garg, R., Biswas, A. and Rai, A. B. 2016. Bacterial diseases of rice: an overview. J. Pure Appl. Microbiol. 9:725-736.
24 Lim, C. J., Basri, M., Omar, D., Abdul Rahman, M. B., Salleh, A. B. and Raja Abdul Rahman, R. N. Z. 2012. Physicochemical characterization and formation of glyphosate-laden nanoemulsion for herbicide formulation. Ind. Crops Prod. 36:607-613.   DOI
25 Liu, Q., Meng, X., Li, Y., Zhao, C.-N., Tang, G.-Y. and Li, H.-B. 2017. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 18:1283.   DOI
26 Lopez, E. I. C., Balcazar, M. F. H., Mendoza, J. M. R., Ortiz, A. D. R., Melo, M. T. O., Parrales, R. S. and Delgado, T. H. 2017. Antimicrobial activity of essential oil of Zingiber officinale Roscoe (Zingiberaceae). Am. J. Plant Sci. 8:1511-1524.   DOI
27 Rajip, P., Sumiya, K. V., Dhanya S., Remya, K. and Narayanakutty, M. C. 2016. Inhibitory effect of plant extracts and plant oils on Xanthomonas oryzae pv oryzae, the bacterial blight pathogen of rice. Int. J. Appl. Nat. Sci. 5:71-76.
28 Ruiz, J., Ventanas, J. and Cava, R. 2001. New device for direct extraction of volatiles in solid samples using SPME. J. Agric. Food Chem. 49:5115-5121.   DOI
29 Bajpai, V. K., Kang, S., Xu, H., Lee, S.-G., Baek, K.-H. and Kang, S. C. 2011. Potential roles of essential oils on controlling plant pathogenic bacteria Xanthomonas species: a review. Plant Pathol. J. 27:207-224.   DOI
30 Awang, K., Ibrahim, H., Rosmy Syamsir, D., Mohtar, M., Mat Ali, R. and Azah Mohamad Ali, N. 2011. Chemical constituents and antimicrobial activity of the leaf and rhizome oils of Alpinia pahangensis Ridl., an endemic wild ginger from Peninsular Malaysia. Chem. Biodivers. 8:668-673.   DOI
31 Belliardo, F., Bicchi, C., Cordero, C., Liberto, E., Rubiolo, P. and Sgorbini, B. 2006. Headspace-solid-phase microextraction in the analysis of the volatile fraction of aromatic and medicinal plants. J. Chromatogr. Sci. 44:416-429.   DOI
32 Bhattarai, K., Pokharel, B., Maharjan, S. and Adhikari, S. 2018. Chemical constituents and biological activities of ginger rhizomes from three different regions of Nepal. J. Nutr. Diet. Probiotics 1:180005.
33 Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R. and Baskaran, D. 2019. Role of essential oils in food safety: antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2:49-55.   DOI
34 Bohme, K., Barros-Velazquez, J., Calo-Mata, P. and Aubourg, S. P. 2014. Antibacterial, antiviral and antifungal activity of essential oils: mechanisms and applications. In: Antimicrobial compounds, eds. by T. Villa and P. Veiga-Crespo, pp. 51-81. Springer, Berlin, Germany.
35 Brusotti, G., Cesari, I., Dentamaro, A., Caccialanza, G. and Massolini, G. 2014. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal. 87:218-228.   DOI
36 Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J. and Coffey, A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34.
37 Sasidharan, I. and Menon, A. N. 2010. Comparative chemical composition and antimicrobial activity fresh and dry ginger oils (Zingiber officinale Roscoe). Int. J. Curr. Pharm. Res. 2:40-43.
38 Hajano, J.-U.-D., Lodhi, A. M., Pathan, M. A., Khanzada, M. A. and Shah, G. S. 2012. In-vitro evaluation of fungicides, plant extracts and bio-controlagents against rice blast pathogen Magnaporthe oryzae couch. Pak. J. Bot. 44:1775-1778.
39 Sahu, S. K., Zheng, P. and Yao, N. 2018. Niclosamide blocks rice leaf blight by inhibiting biofilm formation of Xanthomonas oryzae. Front. Plant Sci. 9:408   DOI
40 Sa-nguanpuag, K., Kanlayanarat, S. and Tanprasert, K. 2008. Applications of volatiles in ginger essential oil can reduce microorganisms in shredded green papaya. Acta Hortic. 804:439-444.   DOI
41 Sendanayake, L. R., Sylvester, T. P., De Silva, U. H. A. J., Dissanayake, D. R. R. P., Daundasekera, D. M. K. C. and Sooriyapathirana, S. D. S. S. 2017. Consumer preference, antibacterial activity and genetic diversity of ginger (Zingiber officinale Roscoe) cultivars grown in Sri Lanka. J. Agric. Sci. 12:207-221.
42 Sener, N., Ozkinali, S., Gur, M., Guney, K., Ozkan, O. E. and Khalifa, M. M. 2017. Determination of antimicrobial activity and chemical composition of pimento and ginger essential oil. Indian J. Pharm. Educ. Res. 51:S230-S233.
43 Shao, Y., Marriott, P., Shellie, R. and Hügel, H. 2003. Solid-phase micro-extraction: comprehensive two-dimensional gas chromatography of ginger (Zingiber officinale) volatiles. Flavour Fragr. J. 18:5-12.   DOI
44 Mahdavi, V., Rafiee-Dastjerdi, H., Asadi, A., Razmjou, J. and Fathi Achachlouei, B. 2018. Synthesis of Zingiber officinale essential oil-loaded nanofiber and its evaluation on the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Crop Prot. 7:39-49.
45 Lu, W.-C., Huang, D.-W., Wang, C.-C. R., Yeh, C.-H., Tsai, J.-C., Huang, Y.-T. and Li, P.-H. 2018. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 26:82-89.   DOI
46 Lucas, G. C., Alves, E., Pereira, R. B., Perina, F. J. and de Souza, R. M. 2012. Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesqui. Agropecu. Bras. 47:351-359.   DOI
47 Mahboubi, M. 2019. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clin. Phytosci. 5:6.   DOI
48 Huang, B., Wang, G., Chu, Z. and Qin, L. 2012. Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Dry. Technol. 30:248-255.   DOI
49 Hakemi-Vala, M., Rafati, H., Aliahmadi, A. and Ardalan, A. 2017. Nanoemulsions: a novel antimicrobial delivery system. In: Nano- and microscale drug delivery systems, ed. by A. Grumezescu, pp. 245-266. Elsevier Inc., Tehran, Iran.
50 Hoferl, M., Stoilova, I., Wanner, J., Schmidt, E., Jirovetz, L., Trifonova, D., Stanchev, V. and Krastanov, A. 2015. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat. Prod. Commun. 10:1085-1090.
51 Iannitelli, A., Grande, R., Di Stefano, A., Di Giulio, M., Sozio, P., Bessa, L. J., Laserra, S., Paolini, C., Protasi, F. and Cellini, L. 2011. Potential antibacterial activity of carvacrol-loaded poly(DL-lactide- co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int. J. Mol. Sci. 12:5039-5051.   DOI
52 Imada, K., Sakai, S., Kajihara, H., Tanaka, S. and Ito, S. 2016. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 65:551-560.   DOI
53 Inkson, B. J. 2016. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, pp. 17-43. Elsevier Ltd., Amsterdam, The Netherlands.
54 Jaafar, F. M., Osman, C. P., Ismail, N. H. and Awang, K. 2007. Analysis of essential oils of leaves, stems, flowers and rhizomes of Etlingera elatior (Jack) R. M. Smith. Malays. J. Anal. Sci. 11:269-273.
55 Marriott, P. J., Shellie, R. and Cornwell, C. 2001. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 936:1-22.   DOI
56 Malandrakis, A. A., Kavroulakis, N. and Chrysikopoulos, C. V. 2019. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 670:292-299.   DOI
57 Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Idris, A. S., Hilmi, N. H. Z. and Daim, L. D. J. 2019. Preparation of chitosan-hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules 24:2498.   DOI
58 Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H., Beta, T. and Li, H.-B. 2019. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8:185.   DOI
59 McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465.   DOI
60 Sharifi-Rad, J., Sureda, A., Tenore, G. C., Daglia, M., SharifiRad, M., Valussi, M., Tundis, R., Sharifi-Rad, M., Loizzo, M. R., Oluwaseun Ademiluyi, A., Sharifi-Rad, R., Ayatollahi, S. A. and Iriti, M. 2017a. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22:70.   DOI
61 Sharifi-Rad, M., Varoni, E. M., Salehi, B., Sharifi-Rad, J., Matthews, K. R., Ayatollahi, S. A., Kobarfard, F., Ibrahim, S. A., Mnayer, D., Zakaria, Z. A., Sharifi-Rad, M., Yousaf, Z., Iriti, M., Basile, A. and Rigano, D. 2017b. Plants of the genus Zingiber as a source of bioactive phytochemicals: from tradition to pharmacy. Molecules 22:2145.   DOI
62 Sharma, P. K., Singh, V. and Ali, M. 2016. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber officinale Roscoe. Pharmacogn. J. 8:185-190.   DOI
63 Soylu, E. M., Soylu, S. and Kurt, S. 2006. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119-128.   DOI
64 Sundin, G. W., Castiblanco, L. F., Yuan, X., Zeng, Q. and Yang, C.-H. 2016. Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology. Mol. Plant Pathol. 7:1506-1518.
65 Tao, C., Wang, Y., Zhang, X., Li, L., Wu, Y., Han, X., Jiang, X. and Lv, Z. 2019. Mechanism of action of essential oils extracted from bamboo (Phyllostachys heterocycla cv. pubescens) leaves: chemical composition and antimicrobial activity against four food-related microorganisms. BioResources 14:1419-1434.   DOI
66 Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H. and Rather, M. A. 2019. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drugresistant microbial pathogens. Microb. Pathog. 134:103580.   DOI
67 Dara, S. K. 2019. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 10:12.
68 Bylaite, E., Roozen, J. P., Legger, A., Venskutonis, R. P. and Posthumus, M. A. 2000. Dynamic headspace-gas chromatography-olfactometry analysis of different anatomical parts of lovage (Levisticum officinale Koch.) at eight growing stages. J. Agric. Food Chem. 48:6183-6190.   DOI
69 Chiang, E. C. W., Yan, L. Y. and Ali, N. A. M. 2010. Composition and antibacterial activity of essential oils from leaves of Etlingera species (Zingiberaceae). Int. J. Adv. Sci. Arts 1:1-12.
70 Chouhan, S., Sharma, K. and Guleria, S. 2017. Antimicrobial activity of some essential oils: present status and future perspectives. Medicines (Basel) 4:58.   DOI
71 Debbarma, J., Kishore, P., Nayak, B. B., Kannuchamy, N. and Gudipati, V. 2013. Antibacterial activity of ginger, eucalyptus and sweet orange peel essential oils on fish-borne bacteria. J. Food Process. Preserv. 37:1022-1030.   DOI
72 De Melo, G. A. N., Grespan, R., Fonseca, J. P., Farinha, T. O., da Silva, E. L., Romero, A. L., Bersani-Amado, C. A. and Cuman, R. K. N. 2011. Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro. J. Nat. Med. 65:241-246.   DOI
73 Dhanik, J., Arya, N. and Nand, V. 2017. A review on Zingiber officinale. J. Pharmacogn. Phytochem. 6:174-184.
74 Vasireddy, L., Bingle, L. E. H. and Davies, M. S. 2018. Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. PLoS ONE 13:e0201835.   DOI
75 Trimanto, T. and Hapsari, L. 2018. Short communication: a new record of Etlingera megalocheilos (Griff.) A.D. Poulsen (Zingiberaceae) in Sulawesi, Indonesia. Biodiversitas 19:1227-1235.   DOI
76 Vairappan, C. S., Nagappan, T. and Palaniveloo, K. 2012. Essential oil composition, cytotoxic and antibacterial activities of five Elingera species from Borneo. Nat. Prod. Commun. 7:239-242.
77 Valentim, D. S. S., Duarte, J. L., Oliveira, A. E. M. F. M., Cruz, R. A. S., Carvalho, J. C. T., Conceicao, E. C., Fernandes, C. P. and Tavares-Dias, M. 2018. Nanoemulsion from essential oil of Pterodon emarginatus (Fabaceae) shows in vitro efficacy against monogeneans of Colossoma macropomum (Pisces: Serrasalmidae). J. Fish Dis. 41:443-449.   DOI
78 Vatansever, F., de Melo, W. C. M. A., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N. A., Yin, R., Tegos, G. P. and Hamblin, M. R. 2013. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2:1-35.
79 Wang, S., Wang, F., Gao, S. and Wang, X. 2016. Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut. 227:228.   DOI
80 Wang, Y., Lin, Y., Xu, Y., Yin, Y., Guo, H. and Du, W. 2019. Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ. Pollut. Bioavailab. 31:80-84.   DOI
81 Winterbourn, C. C. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4:278-286.   DOI
82 Kaushal, M. 2018. Role of microbes in plant protection using intersection of nanotechnology and biology. In: Nanobiotechnology applications in plant protection, eds. by K. A. AbdElsalam and R. Prasad, pp. 111-135. Springer International Publishing, Cham, Switzerland.
83 Memar, M. Y., Ghotaslou, R., Samiei, M. and Adibkia, K. 2018. Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11:567-576.   DOI
84 Mesomo, M. C., Corazza, M. L., Ndiaye, P. M., Dalla Santa, O. R., Cardozo, L. and de Paula Scheer, A. 2013. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): chemical composition and antibacterial activity. J. Supercrit. Fluids 80:44-49.   DOI
85 Dhifi, W., Bellili, S., Jazi, S., Bahloul, N. and Mnif, W. 2016. Essential oils' chemical characterization and investigation of some biological activities: a critical review. Medicines (Basel) 3:25.   DOI
86 Disfani, M. N., Mikhak, A., Kassaee, M. Z. and Maghari, A. 2017. Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch. Agron. Soil Sci. 63:817-826.   DOI
87 Jakribettu, R. P., Boloor, R., Bhat, H. P., Thaliath, A., Haniadka, R., Rai, M. P., George, T. and Baliga, M. S. 2016. Ginger (Zingiber officinale Rosc.) oils. In: Essentials oils in food preservation, flavor and safety, ed. by V. R. Preedy, pp. 447-454. Academic Press, London, UK.
88 Joseph, R., Joseph, T. and Joseph, J. 2001. Volatile essential oil constituents of Alpinia smithiae (Zingiberaceae). Rev. Biol. Trop. 49:509-512.
89 Jugreet, B. S., Suroowan, S., Rengasamy, R. R. K. and Mahomoodally, M. F. 2020. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 101:89-105.   DOI
90 Kerekes, E.-B., Deak, E., Tako, M., Tserennadmid, R., Petkovits, T., Vagvolgyi, C. and Krisch, J. 2013. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J. Appl. Microbiol. 115:933-942.   DOI
91 Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R. and Schuster, E. W. 2012. Applications of nanomaterials in agricultural production and crop protection: a review. Crop. Prot. 35:64-70.   DOI
92 Koch, W., Kukula-Koch, W., Marzec, Z., Kasperek, E., Wyszo- grodzka-Koma, L., Szwerc, W. and Asakawa, Y. 2017. Application of chromatographic and spectroscopic methods towards the quality assessment of ginger (Zingiber officinale) rhizomes from ecological plantations. Int. J. Mol. Sci. 18:452.   DOI
93 Koo, I., Shi, X., Kim, S. and Zhang, X. 2014. iMatch2: compound identification using retention index for analysis of gas chromatography-mass spectrometry data. J. Chromatogr. A 1337:202-210.   DOI
94 Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. and De Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451-1474.   DOI
95 Wonni, I., Ouedraogo, S. L., Ouedraogo, I. and Sanogo, L. 2016. Antibacterial activity of extracts of three aromatic plants from Burkina Faso against rice pathogen, Xanthomanas oryzae. Afr. J. Microbiol. Res. 10:681-686.   DOI
96 Wu, K., Lin, Y., Chai, X., Duan, X., Zhao, X. and Chun, C. 2019. Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli. Food Sci. Nutr. 7:2546-2555.   DOI
97 Wu, Y., Luo, Y. and Wang, Q. 2012. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. LWT 48:283-290.   DOI
98 Mostafa, N. M. 2018. Antibacterial activity of ginger (Zingiber officinale) leaves essential oil nanoemulsion against the cariogenic Streptococcus mutans. J. Appl. Pharm. Sci. 8:34-41.   DOI
99 Nazzaro, F., Fratianni, F., Coppola, R. and De Feo, V. 2017. Essential oils and antifungal activity. Pharmaceuticals (Basel) 10:86.   DOI
100 Nega, A. 2014. Review on concepts in biological control of plant pathogens. J. Biol. Agric. Healthc. 4:33-55.
101 Nikolic, M., Vasic, S., Djurdjevic, J., Stefanovic, O. and Comic, L. 2014. Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe)) ethanolic extract. Kragujev. J. Sci. 36:129-136.   DOI
102 Nirmala M, J. and Nagarajan, R. 2017. Recent research trends in fabrication and applications of plant essential oil based nanoemulsions. J. Nanomed. Nanotechnol. 8:434.
103 Nour, A. H., Yap, S. S. and Nour, A. H. 2017. Extraction and chemical compositions of ginger (Zingiber officinale Roscoe) essential oils as cockroaches repellent. Aust. J. Basic Appl. Sci. 11:1-8.
104 Onyenekwe, P. C. and Hashimoto, S. 1999. The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe). Eur. Food Res. Technol. 209:407-410.   DOI
105 Gortzi, O., Lala, S., Chinou, I. and Tsaknis, J. 2007. Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules 3:932-945.
106 Yang, Z.-N., Yang, W., Peng, Q., He, Q., Feng, Y., Luo, S. and Yu, Z. 2009. Volatile phytochemical composition of rhizome of ginger after extraction by headspace solid-phase microextraction, petrol ether extraction and steam distillation extraction. Bangladesh J. Pharmacol. 4:136-143.
107 Zhang, D., Gan, R.-Y., Zhang, J.-R., Farha, A. K., Li, H.-B., Zhu, F, Wang, X.-H. and Corke, H. 2020. Antivirulence properties and related mechanisms of spice essential oils: a comprehensive review. Compr. Rev. Food Sci. Food Saf. 19:1018-1055.   DOI
108 Das, A., Kasoju, N., Bora, U. and Rangan, L. 2013. Chemicobiological investigation of rhizome essential oil of Zingiber moran: native to Northeast India. Med. Chem. Res. 22:4308-4315.   DOI
109 Dorman, H. J. D. and Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88:308-316.   DOI
110 Donsi, F. and Ferrari, G. 2016. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 233:106-120.   DOI
111 Du, W., Yang, J., Peng, Q., Liang, X. and Mao, H. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:109-116.   DOI
112 Dwyer, D. J., Kohanski, M. A. and Collins, J. J. 2009. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 12:482-489.   DOI
113 Echeverria, J. and de Albuquerque, R. D. D. G. 2019. Nanoemulsions of essential oils: new tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines (Basel) 6:42.   DOI
114 Ezraty, B., Gennaris, A., Barras, F. and Collet, J.-F. 2017. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15:385-396.   DOI
115 El Asbahani, A., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F. N. R. and Elaissari, A. 2015. Essential oils: from extraction to encapsulation. Int. J. Pharm. 483:220-243.   DOI
116 El-Baroty, G. S., Abd El-Baky, H. H., Farag, R. S. and Saleh, M. A. 2010. Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr. J. Biochem. Res. 4:167-174.
117 Emmanuel, T., Aristide, B., Leopold, T., Benoit, N. M. and Joseph, M. T. 2013. Phytochemical screening, chemical composition and antimicrobial activity of Zingiber officinale essential oil of Adamaoua region (Cameroon). J. Chem. Pharm. Res. 5:296-301.
118 Pedro, A. S., Santo, I. E., Silva, C. V., Detoni, C. and Albuquerque, E. 2013. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In: Microbial pathogens and strategies for combating them: science, technology and education, ed. by A. Mednez-Vilas, pp. 1364-1374. Formatex Research Center, Badajoz, Spain.
119 Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instr. 1:1-25
120 Panth, M., Hassler, S. C. and Baysal-Gurel, F. 2020. Methods for management of soilborne diseases in crop production. Agriculture 10:16.   DOI
121 Petrus, E. M., Tinakumari, S., Chai, L. C., Ubong, A., Tunung, R., Elexson, N., Chai, L. F. and Son, R. 2011. A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int. Food Res. J. 18:55-66.
122 Poli, J.-P., Guinoiseau, E., De Rocca Serra, D., Sutour, S., Paoli, M., Tomi, F., Quilichini, Y., Berti, L. and Lorenzi, V. 2018. Anti-quorum sensing activity of 12 essential oils on Chromobacterium violaceum and specific action of cis-cis-pmenthenolide from corsican Metha suaveolens sp. insularis. Molecules 23:2125.   DOI
123 Popovic, Z., Matic, R., Bojovic, S., Stefanovic, M. and Vidakovic, V. 2016. Ethnobotany and herbal medicine in modern complementary and alternative medicine: an overview of publications in the field of I&C medicine 2001-2013. J. Ethnopharmacol. 181:182-192.   DOI
124 Prasad, R., Kumar, V. and Prasad, K. S. 2014. Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr. J. Biotechnol. 13:705-713.   DOI
125 Rai, M. and Ingle, A. 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 94:287-293.   DOI
126 Abdel-Kader, M. M., Shaban, A. M. H. and El-Mougy, N. S. 2015. Bi-ological and chemical resistance inducers as seed priming for controlling faba bean root rot disease under field conditions. Int. J. Eng. Innov. Technol. 4:300-305.