Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.04.2020.0074

Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants  

Vu, Nguyen Trung (Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University)
Oh, Chang-Sik (Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University)
Publication Information
The Plant Pathology Journal / v.36, no.3, 2020 , pp. 204-217 More about this Journal
Abstract
In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.
Keywords
bacteriophages; disease management; plant-pathogenic bacteria;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Elhalag, K., Nasr-Eldin, M., Hussien, A. and Ahmad, A. 2018. Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. J. Basic Microbiol. 58:658-669.   DOI
2 Farooq, U., Yang, Q., Ullah, M. W. and Wang, S. 2018. Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens. Bioelectron. 118:204-216.   DOI
3 Flaherty, J. E., Harbaugh, B. K., Jones, J. B., Somodi, G. C. and Jackson, L. E. 2001. H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 36:98-100.   DOI
4 Flaherty, J. E., Jones, J. B., Harbaugh, B. K., Somodi, G. C. and Jackson, L. E. 2000. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 35:882-884.   DOI
5 Flockhart, A. F., Tree, J. J., Xu, X., Karpiyevich, M., McAteer, S. P., Rosenblum, R., Shaw, D. J., Low, C. J., Best, A., Gannon, V., Laing, C., Murphy, K. C., Leong, J. M., Schneiders, T., La Ragione, R. and Gally, D. L. 2012. Identification of a novel prophage regulator in Escherichia coli controlling the expression of type III secretion. Mol. Microbiol. 83:208-223.   DOI
6 Lim, J.-A., Jee, S., Lee, D. H., Roh, E., Jung, K., Oh, C. and Heu, S. 2013. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 23:1147-1153.   DOI
7 Loc-Carrillo, C. and Abedon, S. T. 2011. Pros and cons of phage therapy. Bacteriophage 1:111-114.   DOI
8 Lood, R., Winer, B. Y., Pelzek, A. J., Diez-Martinez, R., Thandar, M., Euler, C. W., Schuch, R. and Fischetti, V. A. 2015. Novel phage lysin capable of killing the multidrug-resistant gramnegative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob. Agents Chemother. 59:1983-1991.   DOI
9 Mallmann, W. L. and Hemstreet, C. 1924. Isolation of an inhibitory substance from plants. J. Agric. Res. 28:599-602.
10 Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629.   DOI
11 Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC/WPRS Bull. 23:89-92.
12 Zaczek-Moczydlowska, M. A., Young, G. K., Trudgett, J., Fleming, C. C., Campbell, K. and O'Hanlon, R. 2020. Genomic characterization, formulation and efficacy in planta of a Siphoviridae and Podoviridae protection cocktail against the bacterial plant pathogens Pectobacterium spp. Viruses 12:150.   DOI
13 Wittmann, J., Eichenlaub, R. and Dreiseikelmann, B. 2010. The endolysins of bacteriophages CMP1 and CN77 are specific for the lysis of Clavibacter michiganensis strains. Microbiology 156:2366-2373.   DOI
14 Yin, Y., Ni, P., Deng, B., Wang, S., Xu, W. and Wang, D. 2019. Isolation and characterisation of phages against Pseudomonas syringae pv. actinidiae. Acta. Agric. Sect. B Soil Plant Sci. 69:199-208.
15 Yu, J.-G., Lim, J.-A., Song, Y.-R., Heu, S., Kim, G. H., Koh, Y. J. and Oh, C.-S. 2016. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J. Microbiol. Biotechnol. 26:385-393.   DOI
16 McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40:443-465.   DOI
17 Forde, A., Daly, C. and Fitzgerald, G. F. 1999. Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris $HO_2$. Appl. Environ. Microbiol. 65:1540-1547.   DOI
18 Fortier, L.-C. and Sekulovic, O. 2013. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354-365.   DOI
19 Dy, R. L., Rigano, L. A. and Fineran, P. C. 2018. Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem. Soc. Trans. 46:1605-1613.   DOI
20 Masami, N., Masao, G., Katsumi, A. and Tadaaki, H. 2004. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. actinidiae. Eur. J. Plant Pathol. 110:223-226.   DOI
21 Mellano, M. A. and Cooksey, D. A. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170:2879-2883.   DOI
22 Nelson, D. C., Schmelcher, M., Rodriguez-Rubio, L., Klumpp, J., Pritchard, D. G., Dong, S. and Donovan, D. M. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83:299-365.   DOI
23 Ahern, S. J., Das, M., Bhowmick, T. S., Young, R. and Gonzalez, C. F. 2014. Characterization of novel virulent broad-hostrange phages of Xylella fastidiosa and Xanthomonas. J. Bacteriol. 196:459-471.   DOI
24 Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2014. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5:321.
25 Morgan, A. D., Bonsall, M. B. and Buckling, A. 2010. Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64:2980-2987.
26 Nagai, H., Miyake, N., Kato, S., Maekawa, D., Inoue, Y. and Takikawa, Y. 2017. Improved control of black rot of broccoli caused by Xanthomonas campestris pv. campestris using a bacteriophage and a nonpathogenic Xanthomonas sp. strain. J. Gen. Plant Pathol. 83:373-381.   DOI
27 Nanda, A. M., Thormann, K. and Frunzke, J. 2015. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197:410-419.   DOI
28 Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., Guven, K. and Iriarte, F. B. 2005. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis. 89:712-716.   DOI
29 Attai, H., Rimbey, J., Smith, G. P. and Brown, P. J. B. 2017. Expression of a peptidoglycan hydrolase from lytic bacteriophages Atu_ph02 and Atu_ph03 triggers lysis of Agrobacterium tumefaciens. Appl. Environ. Microbiol. 83:e01498-17.
30 Arthurs, S. P., Lacey, L. A. and Behle, R. W. 2006. Evaluation of spray-dried lignin-based formulations and adjuvants as solar protectants for the granulovirus of the codling moth, Cydia pomonella (L). J. Invertebr. Pathol. 93:88-95.   DOI
31 Bae, J. Y., Wu, J., Lee, H. J., Jo, E. J., Murugaiyan, S., Chung, E. and Lee, S.-W. 2012. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J. Microbiol. Biotechnol. 22:1613-1620.   DOI
32 Balogh, B. 2002. Strategies for improving the efficacy of bacteriophages for controlling bacterial spot of tomato. M.S. thesis. University of Florida, Gainesville, FL, USA.
33 Balogh, B. 2006. Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. Ph.D. thesis. University of Florida, Gainesville, FL, USA.
34 Balogh, B., Jones, J. B., Iriarte, F. B. and Momol, M. T. 2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11:48-57.   DOI
35 Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., King, P. and Jackson, L. E. 2003. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis. 87:949-954.   DOI
36 Gasic, K., Kuzmanovic, N., Ivanovic, M., Prokic, A., Sevic, M. and Obradovic, A. 2018. Complete genome of the Xanthomonas euvesicatoria specific bacteriophage $K{\Phi}1$, its survival and potential in control of pepper bacterial spot. Front. Microbiol. 9:2021.   DOI
37 Frampton, R. A., Taylor, C., Moreno, A. V. H., Visnovsky, S. B., Petty, N. K., Pitman, A. R. and Fineran, P. C. 2014. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 80:2216-2228.   DOI
38 Frobisher, M. Jr. and Brown, J. H. 1927. Transmissible toxicogenicity of streptococci. Bull. Johns Hopkins Hosp. 41:167-173.
39 Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M. and Yamada, T. 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol. 77:4155-4162.   DOI
40 Gill, J. and Abedon, S. T. 2003. Bacteriophage ecology and plants. APSnet Features. https://doi.org/10.1094/APSnetFeature-2003-1103.
41 Gomez, P. and Buckling, A. 2011. Bacteria-phage antagonistic coevolution in soil. Science 332:106-109.   DOI
42 Goto, M. 2012. Fundamentals of bacterial plant pathology. Academic Press, Burlington, MA, USA. 342 pp.
43 Greer, G. G. 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68:1102-1111.   DOI
44 Ramirez, M., Neuman, B. and Ramirez, C. A. 2020. Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biol. Control. (in press). https://doi.org/10.1016/j.biocontrol.2020.104238.
45 Okabe, N. and Goto, M. 1963. Bacteriophages of plant pathogens. Annu. Rev. Phytopathol. 1:397-418.   DOI
46 Pohane, A. A. and Jain, V. 2015. Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiology 161:2269-2276.   DOI
47 Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64.   DOI
48 Ranjani, P., Gowthami, Y., Gnanamanickam, S. S. and Palani, P. 2018. Bacteriophages: a new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiol. Biotechnol. Lett. 46:346-359.   DOI
49 Groman, N. B. 1953. Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. J. Bacteriol. 66:184-191.   DOI
50 Groman, N. B. 1955. Evidence for the active role of bacteriophage in the conversion of nontoxigenic Corynebacterium diphtheriae to toxin production. J. Bacteriol. 69:9-15.   DOI
51 Rezzonico, F., Smits, T. H. and Duffy, B. 2011. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl. Environ. Microbiol. 77:3819-3829.   DOI
52 Agrios, G. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA. 952 pp.
53 Abedon, S. T., Kuhl, S. J., Blasdel, B. G. and Kutter, E. M. 2011. Phage treatment of human infections. Bacteriophage 1:66-85.   DOI
54 Addy, H. S., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2012. Utilization of filamentous phage ${\varphi}RSM3$ to control bacterial wilt caused by Ralstonia solanacearum. Plant Dis. 96:1204-1209.   DOI
55 Adriaenssens, E. M., Van Vaerenbergh, J., Vandenheuvel, D., Dunon, V., Ceyssens, P.-J., De Proft, M., Kropinski, A. M., Noben, J.-P., Maes, M. and Lavigne, R. 2012. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani'. PLoS ONE 7:e33227.   DOI
56 Born, Y., Fieseler, L., Klumpp, J., Eugster, M. R., Zurfluh, K., Duffy, B. and Loessner, M. J. 2014. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage. Environ. Microbiol. 16:2168-2180.   DOI
57 Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B. and Graham, J. H. 2011. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl. Environ. Microbiol. 77:4089-4096.   DOI
58 Behle, R. W., McGuire, M. R. and Shasha, B. S. 1996. Extending the residual toxicity of Bacillus thuringiensis with caseinbased formulations. J. Econ. Entomol. 89:1399-1405.   DOI
59 Bhunchoth, A., Phironrit, N., Leksomboon, C., Chatchawankanphanich, O., Kotera, S., Narulita, E., Kawasaki, T., Fujie, M. and Yamada, T. 2015. Isolation of Ralstonia solanacearuminfecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J. Appl. Microbiol. 118:1023-1033.   DOI
60 Born, Y., Fieseler, L., Thony, V., Leimer, N., Duffy, B. and Loessner, M. J. 2017. Engineering of bacteriophages Y2::dpoL1-C and Y2::luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 83:e00341-17.
61 Borysowski, J., Weber-Dabrowska, B. and Gorski, A. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. (Maywood) 231:366-377.   DOI
62 Boule, J., Sholberg, P. L., Lehman, S. M., O'gorman, D. T. and Svircev, A. M. 2011. Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can. J. Plant Pathol. 33:308-317.   DOI
63 Santos, S. B., Costa, A. R., Carvalho, C., Nobrega, F. L. and Azeredo, J. 2018. Exploiting bacteriophage proteomes: the hidden biotechnological potential. Trends Biotechnol. 36:966-984.   DOI
64 Rombouts, S., Volckaert, A., Venneman, S., Declercq, B., Vandenheuvel, D., Allonsius, C. N., Van Malderghem, C., Jang, H. B., Briers, Y., Noben, J. P., Klumpp, J., Van Vaerenbergh, J., Maes, M. and Lavigne, R. 2016. Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Front. Microbiol. 7:279.
65 Russel, M., Linderoth, N. A. and Sali, A. 1997. Filamentous phage assembly: variation on a protein export theme. Gene 192:23-32.   DOI
66 Saccardi, A., Gambin, E., Zaccardelli, M., Barone, G. and Mazzucchi, U. 1993. Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchard. Phytopathol. Mediterr. 32:206-210.
67 Schmerer, M., Molineux, I. J. and Bull, J. J. 2014. Synergy as a rationale for phage therapy using phage cocktails. PeerJ 2:e590.   DOI
68 Schnabel, E. L., Fernando, W. G. D., Meyer, M. P., Jones, A. L. and Jackson, L. E. 1998. Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Hortic. 489:649-654.   DOI
69 Hermoso, J. A., Garcia, J. L. and Garcia, P. 2007. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 10:461-472.   DOI
70 Hagens, S. and Loessner, M. J. 2007. Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76:513-519.   DOI
71 Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. and Sullivan, M. B. 2017. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11:1511-1520.   DOI
72 Hwang, M. S., Morgan, R. L., Sarkar, S. F., Wang, P. W. and Guttman, D. S. 2005. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl. Environ. Microbiol. 71:5182-5191.   DOI
73 Ibrahim, Y. E., Saleh, A. A. and Al-Saleh, M. A. 2017. Management of asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Dis. 101:761-765.   DOI
74 Ignoffo, C. M., Garcia, C. and Saathoff, S. G. 1997. Sunlight stability and rain-fastness of formulations of Baculovirus heliothis. Environ. Entomol. 26:1470-1474.   DOI
75 Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M., Wilson, M. and Jones, J. B. 2007. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 73:1704-1711.   DOI
76 Burnham, S., Hu, J., Anany, H., Brovko, L., Deiss, F., Derda, R. and Griffiths, M. W. 2014. Towards rapid on-site phagemediated detection of generic Escherichia coli in water using luminescent and visual readout. Anal. Bioanal. Chem. 406:5685-5693.   DOI
77 Javed, M. A., Poshtiban, S., Arutyunov, D., Evoy, S. and Szymanski, C. M. 2013. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS ONE 8:e69770.   DOI
78 Koskella, B. and Brockhurst, M. A. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:916-931.   DOI
79 Schofield, D. A., Bull, C. T., Rubio, I., Wechter, W. P., Westwater, C. and Molineux, I. J. 2013. "Light-tagged" bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengineered 4:50-54.   DOI
80 Boyd, R. J., Hildebrandt, A. C. and Allen, O. N. 1971. Retardation of crown gall enlargement after bacteriophage treatment. Plant Dis. Rep. 55:145-148.
81 Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O'Mahony, J. and Coffey, A. 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34.
82 Calvo-Garrido, C., Vinas, I., Elmer, P. A., Usall, J. and Teixido, N. 2014. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Manag. Sci. 70:595-602.   DOI
83 Carisse, O., Philion, V., Rolland, D. and Bernier, J. 2000. Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen, Venturia inaequalis. Phytopathology 90:31-37.   DOI
84 Chae, J.-C., Hung, N. B., Yu, S.-M., Lee, H. K. and Lee, Y. H. 2014. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice. J. Microbiol. Biotechnol. 24:740-747.   DOI
85 Stonier, T., McSharry, J. and Speitel, T. 1967. Agrobacterium tumefaciens Conn IV. Bacteriophage PB21 and its inhibitory effect on tumor induction. J. Virol. 1:268-273.   DOI
86 Semenova, E., Nagornykh, M., Pyatnitskiy, M., Artamonova, I. I. and Severinov, K. 2009. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol. Lett. 296:110-116.   DOI
87 Singh, A., Arutyunov, D., Szymanski, C. M. and Evoy, S. 2012. Bacteriophage based probes for pathogen detection. Analyst 137:3405-3421.   DOI
88 Stall, R. E. 1962. Streptomycin resistance of the bacterial spot pathogen and control with streptomycin. Plant Dis. Rep. 46:389-392.
89 Sulakvelidze, A., Alavidze, Z. and Morris, J. G. Jr. 2001. Bacteriophage therapy. Antimicrob. Agent Chemother. 45:649-659.   DOI
90 Sutton, M. D. and Katznelson, H. 1953. Isolation of bacteriophages for the detection and identification of some seedborne pathogenic bacteria. Can. J. Bot. 31:201-205.   DOI
91 Svircev, A., Roach, D. and Castle, A. 2018. Framing the future with bacteriophages in agriculture. Viruses 10:E218.
92 Tanaka, H., Negishi, H. and Maeda, H. 1990. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann. Phytopathol. Soc. Jpn. 56:243-246.   DOI
93 Tewfike, T. A. and Desoky, S. M. 2015. Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann. Agric. Sci. Moshtohor. 53:615-624.   DOI
94 Kutin, R. K., Alvarez, A. and Jenkins, D. M. 2009. Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay. J. Microbiol. Methods 76:241-246.   DOI
95 Chopin, M.-C., Chopin, A. and Bidnenko, E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473-479.   DOI
96 Civerolo, E. L. 1973. Relationship of Xanthomonas pruni bacteriophages to bacterial spot disease in prunus. Phytopathology 63:1279-1284.   DOI
97 Civerolo, E. L. and Keil, H. L. 1969. Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59:1966-1967.
98 Kotila, J. E. and Coons, G. H. 1925. Investigations on the blackleg disease of the potato. Mich. Agric. Exp. Stn. Tech. Bull. 67:3-29.
99 Kuo, T. T., Chang, L. C., Yang, C. M. and Yang, S. E. 1971. Bacterial leaf blight of rice plant. IV. Effect of bacteriophage on the infectivity of Xanthomonas oryzae. Acad. Sin. Inst. Bot. Bot. Bull. 12:1-9.
100 Lai, M.-J., Soo, P.-C., Lin, N.-T., Hu, A., Chen, Y.-J., Chen, L.-K. and Chang, K.-C. 2013. Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int. J. Antimicrob. Agents 42:141-148.   DOI
101 Lang, J. M., Gent, D. H. and Schwartz, H. F. 2007. Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis. 91:871-878.   DOI
102 Le Roy, E. J. 1989. Bacteriophage prevention and control of harmful plant bacteria. U.S. Patent No. US4828999A. U.S. Patent and Trademark Office, Washington, DC, USA.
103 Davies, E. V., Winstanley, C., Fothergill, J. L. and James, C. E. 2016. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. 363:fnw015.   DOI
104 Coffey, A. and Ross, R. P. 2002. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 82: 303-321.   DOI
105 Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959.   DOI
106 Coons, G. H. and Kotila, J. E. 1925. The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357-370.
107 Dennis, C. and Webster, J. 1971. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 57:25-39.   DOI
108 d'Herelle, F. 1917. Sur un microbe invisible antagoniste des Bacillies dysenterique. C. R. Acad. Sci. 165:373-375.
109 Dong, S., Shew, H. D., Tredway, L. P., Lu, J., Sivamani, E., Miller, E. S. and Qu, R. 2008. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. Transgenic Res. 17:47-57.   DOI
110 Lee, Y. A., Hendson, M., Panopoulos, N. J. and Schroth, M. N. 1994. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 176:173-188.   DOI
111 Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R. and Sulakvelidze, A. 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69:4519-4526.   DOI
112 Weber-Dabrowska, B., Mulczyk, M. and Gorski, A. 2001. Bacteriophage therapy for infections in cancer patients. Clin. Appl. Immunol. Rev. 1:131-134.   DOI
113 Thomas, R. 1935. A bacteriophage in relation to Stewart's disease of corn. Phytopathology 25:371-372.
114 Twort, F. W. 1915. An Investigation on the nature of ultra-microscopic viruses. Lancet 186:1241-1243.   DOI
115 Wang, X., Wei, Z., Yang, K., Wang, J., Jousset, A., Xu, Y., Shen, Q. and Friman, V.-P. 2019. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37:1513-1520.   DOI
116 Wei, C., Liu, J., Maina, A. N., Mwaura, F. B., Yu, J., Yan, C., Zhang, R. and Wei, H. 2017. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol. Sin. 32:476-484.   DOI
117 Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:127-181.   DOI
118 Weng, S.-F., Fu, Y.-C., Lin, J.-W. and Tseng, T.-T. 2018. Identification of a broad-spectrum peptidoglycan hydrolase associated with the particle of Xanthomonas oryzae phage Xop411. J. Mol. Microbiol. Biotechnol. 28:78-86.   DOI
119 Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J. and Hein, I. 2014. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front. Plant Sci. 5:655.
120 Wilhelm, S. W. and Suttle, C. A. 1999. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49:781-788.   DOI
121 Wittmann, J., Brancato, C., Berendzen, K. W. and Dreiseikelmann, B. 2016. Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathol. 65:496-502.   DOI
122 Dong, Z., Xing, S., Liu, J., Tang, X., Ruan, L., Sun, M., Tong, Y. and Peng, D. 2018. Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J. Gen. Virol. 99:1453-1462.   DOI
123 Drulis-Kawa, Z., Majkowska-Skrobek, G. and Maciejewska, B. 2015. Bacteriophages and phage-derived proteins: application approaches. Curr. Med. Chem. 22:1757-1773.   DOI