• Title/Summary/Keyword: Plane wave approximation

Search Result 79, Processing Time 0.026 seconds

Diffraction of Electromagnetic Waves by a Dielectric Wedge, Part I: Physical Optics Approximation (쇄기형 유전체에 의한 전자파의 회절, I부 : 물리광학근사)

  • 김세윤;라정웅;신상영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.874-883
    • /
    • 1988
  • A complete form of physical optics solution to the diffraction of electromagnetic waves by a dielectric wedge with arbitrary dielectric constant and general wedge angle is obtained for an incident plane wave with any angle. Based on the formulation of dual integral equation in the spectral domain, the physical optics solution is constructed by sum of geometrical optics term including multiple reflection inside the wedge and the edge diffracted field, of which diffraction functions are represented in a quite simple form as series of cotangent functions weighted by the Fresnel reflection coefficients. Since diffraction patterns of physical optics are discontinous at dielectric interfaces, Part II and III of these three companion papers will be concerned with correction to the error of the physical optics approximation.

  • PDF

Analysis of Transient Response from Conducting Wire Scatterer and Antenna Using Integral Equation (적분 방정식을 이용한 도선 산란체 및 안테나의 과도응답 해석)

  • Jung, Baek-Ho;Seo, Jung-Hoon;Youn, Hee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.559-566
    • /
    • 2002
  • In this paper, we present an accurate and stable method for the solution of the transient electromagnetic response from the conducting wire structures using the time domain integral equation. By using an implicit scheme with the central finite difference approximation for the time domain electric field integral equation, we obtain the transient response from a wire scatterer illuminated by a plane wave and a conducting wire antenna with an impressed voltage source. Also, we consider a wire above a 3-dimensional conducting object. Numerical results are presented, which show the validity of the presented methodology, and compared with a conventional method using backward finite difference approximation.

Metamagnetism in $Fe_3$Al Alloy

  • Rhee, Joo-Yull;Lee, Young-Pak
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.60-62
    • /
    • 2003
  • In this study we report the results of ab initio first-principles calculations to investigate the possibility of metamagnetic behavior in Fe$_3$Al alloy. We used the WIEN2k package of full-potential linearized-augmented- plane-wave method within the local-spin-density approximation to the density-functional theory. The exchange-correlation functional is the generalized-gradient approximation of Perdew-Burke-Ernzerhof. The theoretical lattice constant, which is about 0.5% smaller than the experimental one, is obtained by minimizing the total energy. If the volume decreases about 9 % from the equilibrium, the total magnetic moment decreases abruptly from 4.6 $\mu_{B}$/f.u. to 4.0 $\mu_{B}$/f.u. Since this change is considerably large (∼14%), it is possible to measure by a simple high-pressure experiment at about 180 kbar.

Measurements of X-Ray Production Cross-Sections for 0.5¡­1.2-MeV Proton Beam (0.5~l.2-MeV 양성자빔에 대한 X-선 발생단면적의 측정)

  • Hae-ill BAK;Jun-Gyo BAK
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.108-115
    • /
    • 1990
  • The measurements of X-ray production cross-sections for 0.5~1.2-MeV proton beam are carried out on Cu and Au. For this experiment, the proton tram generated from the SNU 1.5-MV Tandem Van do Graaff accelerator is Incident on the target. The X-rays and the backscattered protons from the irradiated target are detected simultaneously by the Si(Li) X-ray detector and the SSB (Silicone Surface Barrier) charged particle detector The measured values of X-ray production cross-sections are compared with other experimental values and theoretical values such as the PWBA (Plane Wave Born Approximation) and the ECPSSR(Perturbed Stationary State corrected Energy loss, Coulomb deflection, Relativistic effects) values. For measured cross-sections near 1.0- MeV proton energy, the ECPSSR (D.D. Cohenet al., 1985) shows better agreement than the PWBA. Particularly, that of Au for 1.2 MeV proton beam is 9.69$\pm$ 0.39 barns which deviates from the ECPSSR by less than 5%. and the experimental data for 0.5~1.2- MeV proton agree with most of other experimental values within 30%.

  • PDF

Magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) Alloys: A First-principles Study (B2 구조 FeX(X = Al, Si, Ni, Ga, Ge, Sn) 합금의 자기변형에 대한 제일원리계산)

  • Lee, Sunchul;Odkhuu, Dorj;Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.117-121
    • /
    • 2013
  • In this study we investigated magnetism and magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) using a first-principles method, in order to survey the possibility of developing a transition metal based magnetostriction material. The Full-potential Linearized Augmented Plane Wave method was employed for solving the Kohn-Sham equation within the generalized gradient approximation for exchange-correlation interaction between electrons. FeX alloys are stabilized in ferromagnetic states except for the FeSi and FeGe alloys. Magnetostrcition coefficients of FeX (X = Al, Ni, Ga, and Sn) were calculated to be -5, +6, -84, -522ppm, respectively. It is noteworthy that the magnetostriction coefficient (-522ppm) of FeSn is larger than that (+400ppm) of Gafenol.

Magnetism and Magnetocrystalline Anisotropy at fcc Fe (001) Surface

  • Yun, Won-Seok;Cha, Gi-Beom;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.144-148
    • /
    • 2008
  • The size and surface effects on the magnetism of a fcc Fe (001) surface was investigated by performing firstprinciples calculations on 3, 5, 7, and 9 monolayers fcc Fe (001) single slabs with two different two-dimensional lattice constants, ${\alpha}=3.44{\AA}$ (System I) and 3.65 ${\AA}$ (System II), using the all-electron full-potential linearized augmented plane wave method within a generalized gradient approximation. The surface layers were coupled ferromagnetically to the subsurface layer in both systems. However, the magnetism of the inner layers was quite different from each other. While all the inner layers of System II were ferromagnetically coupled in the same way as the surface layer, the inner layers of System I showed a peculiar magnetism, bilayer antiferromagnetism. The calculated spin magnetic moments per Fe atom were approximately 2.7 and 2.9 ${\mu}_B$ at the surface for Systems I and II, respectively, due to the almost occupied Fe d-state being in the majority spin state and band narrowing. The spin orientations of System I were out-of-plane regardless of its thickness, whereas the orientation of System II changed from out-of-plane to in-plane with increasing thickness.

SH Wave Scattering from Cracks: Comparisons of Approximate and Exact Solutions (SH파의 균열 산란장 해석: 근사해와 엄밀해의 비교)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Song, Sung-Jin;Schmerr, L.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2004
  • This Paper describes a crack scattering model for SH wave based on the boundary integral equation(BIE) method, where the fundamental unknown is crack opening displacement(COD). When a time harmonic plane wave was incident on a 2-D isolated crack (slit) of width 2a, the COD distributions were numerically calculated as a function of ka. The calculated COD agreed well with results obtained with other methods. The far-field scattering amplitude, which completely characterizes the flaw response, was calculated in two ways. The Kirchhoff approximation and the BIE-COD exact formulation were compared in terms of incidence angle and frequency ka in a pulse-echo mode. Maximum response was obtained for both methods at the specular reflection direction. Away from the specular direction, the Kirchhoff approximation becomes less accurate. The time domain crack response was also calculated using a band-limited spectrum of center frequency 10 MHz. At oblique incidence to the crack both methods show the existence of an antisymmetric flash points occurring from the crack edge. The Kirchhoff approximation provides an exact time interval between flash points, although it unrealistically gives the same amplitude.

Analytic Error Caused by the Inconsistency of the Approximation Order between the Non Local Boundary Condition and the Parabolic Governing Equation (포물선 지배 방정식과 비국소적 경계조건의 근사 차수 불일치에 의한 해석적 오차)

  • Lee Keun-Hwa;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.229-238
    • /
    • 2006
  • This paper shows the analytic error caused by the inconsistency of the approximation order between the non local boundary condition (NLBC) and the parabolic governing equation. To obtain the analytic error, we first transform the NLBC to the half space domain using plane wave analysis. Then, the analytic error is derived on the boundary between the true numerical domain and the half space domain equivalent to the NLBC. The derived analytic error is physically expressed as the artificial reflection. We examine the characteristic of the analytic error for the grazing angle, the approximation order of the PE or the NLBC. Our main contribution is to present the analytic method of error estimation and the application limit for the high order parabolic equation and the NLBC.

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

Spin-orbit Coupling Effect on the Structural Optimization: Bismuth Telluride in First-principles (스핀-궤도 각운동량 상호작용의 구조 최적화에 대한 효과: 비스무스 텔루라이드의 제일원리 계산의 경우)

  • Tran, Van Quang;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Spin-orbit coupling (SOC) effect is known to be the physical origin for various exotic magnetic phenomena in the low-dimensional systems. Recently, SOC also draws lots of attention in the study on magnetically doped thermoelectric alloys to determine their properties as the thermoelectric application as well as the topological insulator via the exact electronic structures determination near the Fermi level. In this research, aiming to investigate the spin-orbit coupling effect on the structural properties such as the lattice constants and the bulk modulus of the most widely investigated thermoelectric host material, $Bi_2Te_3$, we carried out the first-principles electronic structure calculation using the all-electron FLAPW (full-potential linearized augmented plane-wave) method. Employing both the local density approximation (LDA) and the generalized gradient approximation (GGA), the structural optimization is achieved by varying the in-plane lattice constant fixing the perpendicular lattice constant and vice versa, to find that the SOC effect increases the equilibrium lattices slightly in both directions while it markedly reduces the bulk modulus value implying the strong orientational dependence, which are attributed to the material's intrinsic structural anisotropy.