Browse > Article
http://dx.doi.org/10.4283/JKMS.2013.23.4.117

Magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) Alloys: A First-principles Study  

Lee, Sunchul (Department of Physics, University of Ulsan)
Odkhuu, Dorj (Department of Physics, University of Ulsan)
Kwon, Oryong (Department of Physics, University of Ulsan)
Hong, Soon Cheol (Department of Physics, University of Ulsan)
Abstract
In this study we investigated magnetism and magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) using a first-principles method, in order to survey the possibility of developing a transition metal based magnetostriction material. The Full-potential Linearized Augmented Plane Wave method was employed for solving the Kohn-Sham equation within the generalized gradient approximation for exchange-correlation interaction between electrons. FeX alloys are stabilized in ferromagnetic states except for the FeSi and FeGe alloys. Magnetostrcition coefficients of FeX (X = Al, Ni, Ga, and Sn) were calculated to be -5, +6, -84, -522ppm, respectively. It is noteworthy that the magnetostriction coefficient (-522ppm) of FeSn is larger than that (+400ppm) of Gafenol.
Keywords
magnetostriction; first-principles calculation; Fe-based alloy; magnetism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Miyazaki, T. Saito, and Y. Fujino, J. Magn. Magn. Mater. 171, 320 (1997).   DOI   ScienceOn
2 H. Samata, N. Fujiwara, Y. Nagata, T. Uchida, and M. D. Lan, J. Magn. Magn. Mater. 195, 376 (1999).   DOI   ScienceOn
3 A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, J. Appl. Phys. 93, 8621(2003).   DOI   ScienceOn
4 H. Wang, Z. D. Zhang, R. Wu, and L. Z. Sun, Acta Mater. 61, 2919 (2013).   DOI   ScienceOn
5 Y. Zhang, H. Wang, and R. Wu, Phys. Rev. B 86, 224410 (2012).   DOI
6 W. Kim, S. C. Hong, J. Seo, S. J. Oh, H. G. Min, and J. S. Kim, Phys. Rev. B 70, 174453 (2004).   DOI   ScienceOn
7 W. Kim, S. J. Oh, J. Seo, H. G. Min, S. C. Hong, and J. S. Kim, Phys. Rev. B 65, 205407 (2002).   DOI   ScienceOn
8 R. Wu, J. Appl. Phys. 91, 7358 (2002).   DOI   ScienceOn
9 M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982).   DOI
10 W. Kohn and L. J. Sham, Phys, Rev. 140, A1133 (1965).   DOI
11 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 386 (1996).   DOI   ScienceOn
12 D. Odkhuu, W. S. Yun, S. H. Rhim, and S. C. Hong, Appl. Phys. Lett. 98, 152502 (2011).   DOI   ScienceOn
13 G. Rahman, I. G. Kim, and H. K. D. H. Bhadeshia, J. Appl. Phys. 111, 063503 (2012).   DOI   ScienceOn
14 S. C. Hong, W. S. Yun, and R. Wu, Phys. Rev. B 79, 054419 (2009).   DOI   ScienceOn
15 D. Odkhuu and S. C. Hong, J. Appl. Phys. 107, 09A945 (2010).   DOI   ScienceOn
16 J. P. Joule, Ann. Electr., Magn., Chem. 8, 219 (1842).