DOI QR코드

DOI QR Code

Magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) Alloys: A First-principles Study

B2 구조 FeX(X = Al, Si, Ni, Ga, Ge, Sn) 합금의 자기변형에 대한 제일원리계산

  • Received : 2013.07.18
  • Accepted : 2013.08.22
  • Published : 2013.08.31

Abstract

In this study we investigated magnetism and magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) using a first-principles method, in order to survey the possibility of developing a transition metal based magnetostriction material. The Full-potential Linearized Augmented Plane Wave method was employed for solving the Kohn-Sham equation within the generalized gradient approximation for exchange-correlation interaction between electrons. FeX alloys are stabilized in ferromagnetic states except for the FeSi and FeGe alloys. Magnetostrcition coefficients of FeX (X = Al, Ni, Ga, and Sn) were calculated to be -5, +6, -84, -522ppm, respectively. It is noteworthy that the magnetostriction coefficient (-522ppm) of FeSn is larger than that (+400ppm) of Gafenol.

본 연구에서는 대표적인 강자성 금속인 Fe에 비자성 원소가 치환된 비교적 단순한 B2 구조의 FeX(X = Al, Si, Ni, Ga, Ge, Sn) 합금의 자기변형계수를 제일원리계산으로 수행하여 Fe 기반 합금이 희토류 원소 기반 자기변형 물질인 Terfenol을 대체할 수 있는 가능성을 탐색하였다. 계산방법으로 자성 연구에 가장 적합한 것으로 알려져 있는 총퍼텐셜 선형보강 평면파(Full-potential Linearized Augmented Plane Wave; FLAPW) 방법을 사용하였으며 일반화 물매근사(generalized gradient approximation: GGA)을 도입하여 전자 상호간의 교환-상관 퍼텐셜을 기술하였다. B2 구조의 FeX(X = Al, Si, Ni, Ga, Ge, Sn)의 합금들 중에 FeSi와 FeGe은 비자성 상태가, 그 외 나머지 합금은 강자성 상태가 안정된 것으로 계산되었다. FeAl, FeNi, FeGa, FeSn의 자기변형계수 는 각각 -5, +6, -84, -522ppm으로 계산되어 FeSn은 큰 자기변형을 가질 수도 있음을 예측하였다.

Keywords

References

  1. J. P. Joule, Ann. Electr., Magn., Chem. 8, 219 (1842).
  2. T. Miyazaki, T. Saito, and Y. Fujino, J. Magn. Magn. Mater. 171, 320 (1997). https://doi.org/10.1016/S0304-8853(97)00076-0
  3. H. Samata, N. Fujiwara, Y. Nagata, T. Uchida, and M. D. Lan, J. Magn. Magn. Mater. 195, 376 (1999). https://doi.org/10.1016/S0304-8853(99)00127-4
  4. A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, J. Appl. Phys. 93, 8621(2003). https://doi.org/10.1063/1.1540130
  5. H. Wang, Z. D. Zhang, R. Wu, and L. Z. Sun, Acta Mater. 61, 2919 (2013). https://doi.org/10.1016/j.actamat.2013.01.046
  6. Y. Zhang, H. Wang, and R. Wu, Phys. Rev. B 86, 224410 (2012). https://doi.org/10.1103/PhysRevB.86.224410
  7. W. Kim, S. C. Hong, J. Seo, S. J. Oh, H. G. Min, and J. S. Kim, Phys. Rev. B 70, 174453 (2004). https://doi.org/10.1103/PhysRevB.70.174453
  8. W. Kim, S. J. Oh, J. Seo, H. G. Min, S. C. Hong, and J. S. Kim, Phys. Rev. B 65, 205407 (2002). https://doi.org/10.1103/PhysRevB.65.205407
  9. R. Wu, J. Appl. Phys. 91, 7358 (2002). https://doi.org/10.1063/1.1450791
  10. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  11. W. Kohn and L. J. Sham, Phys, Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 386 (1996). https://doi.org/10.1103/PhysRevLett.77.386
  13. G. Rahman, I. G. Kim, and H. K. D. H. Bhadeshia, J. Appl. Phys. 111, 063503 (2012). https://doi.org/10.1063/1.3694031
  14. S. C. Hong, W. S. Yun, and R. Wu, Phys. Rev. B 79, 054419 (2009). https://doi.org/10.1103/PhysRevB.79.054419
  15. D. Odkhuu and S. C. Hong, J. Appl. Phys. 107, 09A945 (2010). https://doi.org/10.1063/1.3357411
  16. D. Odkhuu, W. S. Yun, S. H. Rhim, and S. C. Hong, Appl. Phys. Lett. 98, 152502 (2011). https://doi.org/10.1063/1.3578190