• Title/Summary/Keyword: Plane Tip

Search Result 249, Processing Time 0.029 seconds

Relationship of Intraoperative Anatomical Landmarks, the Scapular Plane and the Perpendicular Plane with Glenoid for Central Guide Insertion during Shoulder Arthroplasty

  • Kim, Jung-Han;Min, Young-Kyoung
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • Background: This study was undertaken to evaluate the positional relationship between planes of the glenoid component (the scapular plane and the perpendicular plane to the glenoid) and its surrounding structures. Methods: Computed tomography (CT) images of both shoulders of 100 patients were evaluated using the 3-dimensional CT reconstruction program ($Aquarius^{(R)}$; TeraRecon). We determined the most lateral scapular bony structure of the scapular plane and measured the shortest distance between the anterolateral corner of the acromion and the scapular plane. The distance between the scapular plane and the midpoint of the line connecting the posterolateral corner of acromion and the anterior tip of the coracoid process (fulcrum axis) was also evaluated. The perpendicular plane was then adjusted to the glenoid and the same values were re-assessed. Results: The acromion was the most lateral scapular structure of scapular plane and perpendicular plane to the glenoid. The average distance from the anterolateral corner of the acromion to the scapular plane was $10.44{\pm}5.11mm$, and to the plane perpendicular to the glenoid was $9.55{\pm}5.13mm$. The midpoint of fulcrum axis was positioned towards the acromion and was measured at $3.90{\pm}3.21mm$ from the scapular plane and at $3.84{\pm}3.17mm$ from the perpendicular plane to the glenoid. Conclusions: Our data indicates that the relationship between the perpendicular plane to the glenoid plane and its surrounding structures is reliable and can be used as guidelines during glenoid component insertion (level of evidence: Level IV, case series, treatment study).

Mode III fracture analysis of piezoelectric materials by Trefftz BEM

  • Qin, Qing-Hua
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.225-239
    • /
    • 2005
  • Applications of the Trefftz boundary element method (BEM) to anti-plane electroelastic problems are presented in this paper. Both direct and indirect methods with domain decomposition are discussed in details. Each crack is treated as semi-infinite thin slit defined in a subregion, for which a particular solution of the anti-plane problem, satisfying exactly the crack-face condition, is derived. The stress intensity factors defined at each crack tip can be directly computed from the coefficients of the particular solution. The performance of the proposed formulation is assessed by two examples and comparison is made with results obtained by other approaches. The Trefftz boundary element approach is demonstrated to be suitable for the analysis of the anti-plane problem of piezoelectric materials.

The Spark Voltage Characteristics of Needle Gaps (침단간극의 불꽃 전압특성)

  • 정성계
    • 전기의세계
    • /
    • v.26 no.3
    • /
    • pp.69-72
    • /
    • 1977
  • The effects of sharpness of needle electode on the spark voltage in needle-plane and needle-needle spark gaps at atmospheric pressure was investigated experimentaly in this paper. As the sharpness of needle electrode increases, the spark voltage increases, and the rate of increase is greater in needle-needle electrode than in needle-plane gap. the effects of sharpness is greater in small gap length. These characteristics can be explained by the electric field strength at the needle tip depending on the sharpness of needle, electro-static capacity between the electrodes, and the polarity effect in needle-plane gap. These experimental results will be able to play an important roles on the design of needle-needle gap as high voltage measurement devices and of needle-plane gap as high voltage rectifier equipments.

  • PDF

Mode III Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Anti-Plane Deformation (이방성재료 접합 띠판에 대한 면외 동적계면균열)

  • Park, Jae-Wan;Choi, Sung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.111-116
    • /
    • 2000
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strip under out-of-plane clamped displacements is analyzed. The asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. The dynamic energy release rate is also obtained as a form related to the stress intensity factor.

  • PDF

Design and Control of a Wire-driven Haptic Device;HapticPen

  • Farahani, Hossein S.;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1662-1667
    • /
    • 2005
  • In this paper, analysis, design, control and prototype construction of a wearable wire-driven haptic interface called HapticPen is discussed. This device can be considered as a wire driven parallel mechanism which three wires are attached to a pen-tip. Wire tensions are provided utilizing three DC servo motors which are attached to a solid frame on the user's body. This device is designed as input as well as output device for a wearable PC. User can write letters or figures on a virtual plate in space. Pen-tip trajectory in space is calculated using motor encoders and force feedback resulting from contact between pen and virtual plate is provided for constraining the pen-tip motion onto the virtual plane that can be easily setup by arbitrary non-collinear three points in space. In this paper kinematic model, workspace analysis, application analysis, control and prototype construction of this device are presented. Preliminary experiments on handwriting in space show feasibility of the proposed device in wearable environments.

  • PDF

The Values of J-integral and Shapes of Plastic Zone Near a Crack Tip of Cracked Panels by the $\rho$-Version of F.E.M. ($\rho$-Version 유한요소법에 의한 균열판의 소성역 형상과 J-적분값 산정)

  • 홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.42-49
    • /
    • 1999
  • Because the linear elastic tincture analysis has been proved to be insufficient in predicting the failure of cracked bodies, in recent years, a number of fracture concepts have been studied which remain applicable in the presence of large-scale plasticity near a crack tip. This work thereby presents a new finite element model, as accurate as possible, to analyze plane problems of ductile fracture under large-scale yielding conditions. Based on the incremental theory of plasticity, the p-version finite element analysis is employed to account for the values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method and equivalent domain integral method. The numerical results by the proposed model are compared with the theoretical solutions in literatures and the numerical solutions by the i,-version of F.E.M.

  • PDF

3-dimensional simulation of field emitter array (Field emitter array의 3차원 시뮬레이션)

  • 정재훈;김영훈;이병호;이종덕
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.100-105
    • /
    • 1997
  • 3-dimensional finite element mehtod (FEM) elecrical field analysis was performed to obtain electric fields on a field emission display (FED) tip in an array form. Because, unlike a single tip structure, there is no azimuthal symmetry for a tip aary, 3D analysis is necessary. To reduce memory requriement the simulatio was performed by applying the neumann boundary condition to the intermediate plane between tips to take the effect of the array on the electric field into account and corresponding current was calculated. To verify our algorithm, comparison between simulation resutls and experimental data from another paper was made and the difference was discussed.

  • PDF

The Evaluation of the Fracture Criterion having an Effect on Crack Extension Simulation for a Thin Sheet (박판시험편의 균열성장 시물레이션에 미치는 파괴기준 평가)

  • 권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.15-19
    • /
    • 2000
  • The exact estimation of the ductile crack growth in a thin sheet would be needed in part of the commercial transport aircraft industry fields. A 2-dimensional elastic plastic finite element analysis was carried out to simulate a stable crack extension in a thin sheet 2024 aluminium alloy. Two kinds of crack modeling were used to evaluate curves of the stable crack extension. And then CTOA(crack tip opening angle) and CTED(crack tip energy density) were calculated in order to determine whether they can be used as useful crack extension criterions in a thin sheet. Results indicate that stable crack extension behaviors were simulated well and CTED is more admirable even though CTOA also is reasonable as a criterion for a stable crack extension in a thin 2024 aluminium alloy sheet.

  • PDF

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

MORPHOLOGIC STUDY FOR SAGITTAL SPLIT RAMUS OSTEOTOMY USING 3-D IMAGE IN MANDIBULAR PROGNATHISM (하악전돌자에서 3차원영상을 이용한 하악지시상분할골절단술과 관련된 하악골의 해부학적 연구)

  • Park, Chung-Ryoul;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.4
    • /
    • pp.350-359
    • /
    • 2005
  • Sagittal split ramus osteotomy(SSRO) has been commonly performed in the mandibular prognathism. The previous studies of the mandibular anatomy for SSRO have mostly been used in dry skull without consideration of age, sex or jaw relationship of patients. This study was performed to evaluate the location of mandibular canal and the anatomy of ramus, such as the location of mandibular lingula and the ramal bone marrow, which were associated with SSRO procedures, in the patients with mandibular prognathism and normal young adults by using computerized tomographs(CT) and 3D images. The young adults at their twenties, who were considered to complete their skeletal growth, and seen in the Department of Orthodontics and Oral and Maxillofacial Surgery in Chonnam National University Hospital between March 2000 and May 2003, were selected. This study was performed in 30 patients (15men, 15women) who were diagnosed as skeletal class I normal relationship, and another 30 patients (15men, 15women) who were diagnosed as skeletal class III relationship upon clinical examination and lateral cephalometric radiographs. The patients were divided into 2 groups : Class I group, the patients who had skeletal class Ⅰ normal relationship(n=30, 15men, 15women), and Class III group, the patients who had skeletal class III relationship(n=30, 15men, 15women). Facial CT was taken in all patients, and pure 3D mandibular model was constructed by V-works version 4.0. The occlusal plane was designed by three points, such as the mesiobuccal cusp of both mandibular 1st molar and the incisal edge of the right mandibular central incisor, and used as a reference plane. Distances between the tip of mandibular lingula and the occlusal plane, the sigmoid notch, the anterior and the posterior borders of ramus were measured. The height of ramal bone marrow from the occlusal plane and the distance between mid-point of mandibular canal and the buccal or lingual cortex of the mandible in the 1st and 2nd molars were measured by V-works version 4.0. Distance(Li-OP) between the occlusal plane and the tip of mandibular lingula of Class III Group was longer than that of Class I Group in men(p<0.01), but there was no significant difference in women between both groups. Distance(Li-SN) between the sigmoid notch and the tip of mandibular ligula of Class III group was longer than that of Class I Group in men(p<0.05), but there was no significant difference in women between both groups. Distance(Li-RA) between the anterior border of ramus and the tip of mandibular lingula of Class III Group was shorter than that of Class I Group in men and women(p<0.01). Distance(Li-RP) between the posterior border of ramus and the tip of mandibular lingula of Class III Group was slightly shorter than that of Class I Group in men(p<0.05), but there was no significant difference in women between both groups. Distance(RA-RP) between the anterior and the posterior borders of ramus of Class III Group was shorter than that of Class I Group in men and women(p<0.01). Longer the distance(SN-AN) between the sigmoid notch and the antegonial notch was, longer the vertical ramal length above occlusal plane, higher the location of mandibular lingula, and shorter the antero-posterior ramal length were observed(p<0.01). Height of ramal bone marrow of Class III Group was higher than that of Class I Group in men and women(p<0.01). Distance between mandibular canal and buccal cortex of Class III Group in 1st and 2nd lower molars was shorter than that of Class I Group in men and women (p<0.05 in 1st lower molar in men, p<0.01 in others). These results indicate that there are some anatomical differences between the normal occlusal patients and the mandibular prognathic patients, such as the anterior-posterior length of ramus, the height of ramal bone marrow, and the location of mandibular canal.