Browse > Article
http://dx.doi.org/10.20466/KPVP.2020.16.2.047

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times  

Lee, Seung-Ho (고려대학교 기계공학부)
Jung, Hyun-Woo (고려대학교 기계공학부)
Kim, Yun Jae (고려대학교 기계공학부)
Publication Information
Transactions of the Korean Society of Pressure Vessels and Piping / v.16, no.2, 2020 , pp. 47-57 More about this Journal
Abstract
A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.
Keywords
Creep crack-tip constraint parameter; Creep crack initiation time; Experimental validation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, Y. J., Oh, Y. R., 2016, "Creep Crack Growth Prediction Considering Plastic Deformation for 316H steel at 550℃ Based on Finite Element Analysis," Proc. of KPVP, Gyeong Ju, Korea, July 14-15, pp. 15-16.
2 Davies, C. M., O'Dowd, N. P., Nikbin, K. M., Webster, G. A., 2007, An Analytical and Computational Study of Crack Initiation under Transient Creep Conditions, Int J Solids Struct, Vol. 44, pp. 1823-1843. doi:https://doi.org/10.1016/j.ijsolstr.2006.08.036   DOI
3 Tan, J. P., Wang, G. Z., Tu, S. T., Xuan, F. Z., 2014, "Load-Independent Creep Constraint Parameter and its Application," Eng Fract Mech, Vol. 116, pp. 41-57. doi:https://doi.org/10.1016/j.engfracmech.2013.12.015   DOI
4 Lee, H. S., Kim, D. J., Kim, Y. J., Ainsworth, R. A., Budden, P. J., 2018, "Transient Elastic-Plastic-Creep Crack-Tip Stress Fields under Load-Controlled Loading," Fatigue Fracture Eng M, Vol. 41, No. 4, pp. 949-965. doi:https://doi.org/10.1111/ffe.12740   DOI
5 Riedel, H., Rice, J. R., 1980, "Tensile Cracks in Creeping Solids," ASTM International.
6 Davies, C. M., Mueller, F., Nikbin, K. M., O'Dowd, N. P., Webster, G. A., 2006, "Analysis of Creep Crack Initiation and Growth in Different Geometries for 316H and Carbon Manganese Steels," ASTM International.
7 Davies, C. M., 2006, Crack Initiation and Growth at Elevated Temperatures in Engineering Steels, Imperial College of Mechanical Engineering, Ph D Thesis.
8 Bettinson, A. D., 2002, The Influence of Constraint on the Creep Crack Growth of 316H Stainless Steel, Imperial College of Mechanical Engineering, Ph D Thesis.
9 Kumar, V. G. M. D., German, M. D., Shih, C. F., 1981, "Engineering Approach for Elastic-Plastic Fracture Analysis," Electric Power Research Institute, Palo Alto, EPRI-NP--1931.
10 Shih, C. F., Needleman, A., 1984, "Fully Plastic Crack Problems, Part 1: Solutions by a Penalty Method," J Appl Mech-T ASME, Vol. 51, No. 1, pp. 48-56. doi:https://doi.org/10.1115/1.3167596   DOI
11 ASTM E1457, 2015, "Standard Test Method for Measurement of Creep Crack Growth Times in Metals," ASTM International.
12 Galkiewicz, J., Graba, M., 2006, "Algorithm for Determination of σij (nθ), εij (nθ), ui (nθ), dn (n) and In (n) Functions in Hutchinson-Rice-Rosengren Solution and its 3D Generalization," J Theor App Mech-Pol, Vol. 44, No. 1, pp. 19-30.
13 Ohji, K., Ogura, K., Kubo, S., 1980 "Stress Field and Modified J-Integral near a Crack Tip under Conditions of Confined Creep Deformation," Journal of the Society of Materials Science, Vol. 29, pp. 465-471.   DOI
14 Tan, M., Celard, N. J. C., Nikbin, K. M., Webster, G. W., 2001, "Comparison of Creep Crack Initiation and Growth in Four Steels Tested in HIDA," Int J Pres Ves Pip, Vol. 78, No. 11-12, pp. 737-747. doi:https://doi.org/10.1016/S0308-0161(01)00085-0   DOI
15 Tada, H., Paris, P. C., Irwin, G. R., 2000, The Analysis of Cracks Handbook, ASME Press, New York
16 Hutchinson, J. W., 1968, "Singular Behaviour at the End of a Tensile Crack in a Hardening Material," J Mech Phys Solids, Vol. 16, No. 1, pp. 13-31. doi:https://doi.org/10.1016/0022-5096(68)90014-8   DOI
17 Rice, J. R., Rosengren, G. F., 1968, "Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material," J Mech Phys Solids, Vol. 16, No. 1, pp. 1-12. doi:https://doi.org/10.1016/0022-5096(68)90013-6   DOI
18 Davies, C. M., Kourmpetis, M., O'Dowd, N. P., Nikbin, K. M., 2007, "Experimental Evaluation of the J or C Parameter for a Range of Crack Geometries," ASTM International.
19 Austin, T. S. P., Webster, G. A., 1992, "Prediction of Creep Crack Growth Incubation periods," Fatigue Fracture Eng M, Vol. 15, No. 11, pp. 1081-1090. doi:https://doi.org/10.1111/j.1460-2695.1992.tb00034.x   DOI
20 Nikbin, K. M., Smith, D. J., Webster, G. A., 1984, "Prediction of Creep Crack Growth from Uniaxial Creep Data," Proceeding of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 396, No. 1810, pp. 183-197. doi:https://doi.org/10.1098/rspa.1984.0116   DOI
21 McClintock, F. A., 1971, Plasticity Aspects of Fracture, Academic Press, pp. 47-225.
22 Budden, P. J., Ainsworth, R. A., 1999, "The Effect of Constraint on Creep Fracture Assessments," Int J Fracture, Vol. 97, No. 1-4, pp. 237-247. doi:https://doi.org/10.1023/A:1018305919622   DOI
23 Betego'n, C., Hancock, J. W., 1991, "Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields," J Appl Mech-T ASME, Vol. 58, No. 1, pp. 104-110. doi:https://doi.org/10.1115/1.2897135   DOI
24 O'Dowd, N. P., Shih, C. F., 1991, "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-I. Structure of Fields," J Mech Phys Solids, Vol. 39, No. 8, pp. 989-1015. doi:https://doi.org/10.1016/0022-5096(91)90049-T   DOI
25 Chao, Y. J., Yang, S., Sutton, M. A., 1994, "On the Fracture of Solids Characterized by One or Two Parameters: Theory and Practice," J Mech Phys Solids, Vol. 42, No. 4, pp. 629-647. doi:https://doi.org/10.1016/0022-5096(94)90055-8   DOI
26 Wang, G. Z., Liu, X. L., Xuan, F. Z., Tu, S. T., 2010, "Effect of Constraint Induced by Crack Depth on Creep Crack-Tip Stress Field in CT Specimens," Int J Solids Structures, Vol. 47, No. 1, pp. 51-57. doi:https://doi.org/10.1016/j.ijsolstr.2009.09.015   DOI
27 Ma, H. S., Wang, G. Z., Xuan, F. Z., Tu, S. T., 2015, "Unified Characterization of In-Plane and Out-of-Plane Creep Constraint based on Crack-Tip Equivalent Creep Strain," Eng Fract Mech, Vol. 142, pp. 1-20. doi:https://doi.org/10.1016/j.engfracmech.2015.05.044   DOI
28 Ainsworth, R. A., O'Dowd, N. P., 1995, "Constraint in the Failure Assessment Diagram Approach for Fracture Assessment," J Press Vess-T ASME, Vol. 117, No. 3, pp. 260-267. doi:https://doi.org/10.1115/1.2842121   DOI
29 Xu, L., Zhang, X., Zhao, L., Han, Y., Jing, H., 2016, "Quantifying the Creep Crack-Tip Constraint Effects using a Load-Independent Constraint Parameter Q," Int J Mech Sci, Vol. 119, pp. 320-332. doi:https://doi.org/10.1016/j.ijmecsci.2016.11.002   DOI