DOI QR코드

DOI QR Code

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times

크리프 균열개시 시간에 대한 구속효과 영향의 정량화

  • Received : 2020.11.29
  • Accepted : 2020.12.28
  • Published : 2020.12.30

Abstract

A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Keywords

References

  1. Kim, Y. J., Oh, Y. R., 2016, "Creep Crack Growth Prediction Considering Plastic Deformation for 316H steel at 550℃ Based on Finite Element Analysis," Proc. of KPVP, Gyeong Ju, Korea, July 14-15, pp. 15-16.
  2. Davies, C. M., O'Dowd, N. P., Nikbin, K. M., Webster, G. A., 2007, An Analytical and Computational Study of Crack Initiation under Transient Creep Conditions, Int J Solids Struct, Vol. 44, pp. 1823-1843. doi:https://doi.org/10.1016/j.ijsolstr.2006.08.036
  3. Nikbin, K. M., Smith, D. J., Webster, G. A., 1984, "Prediction of Creep Crack Growth from Uniaxial Creep Data," Proceeding of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 396, No. 1810, pp. 183-197. doi:https://doi.org/10.1098/rspa.1984.0116
  4. Austin, T. S. P., Webster, G. A., 1992, "Prediction of Creep Crack Growth Incubation periods," Fatigue Fracture Eng M, Vol. 15, No. 11, pp. 1081-1090. doi:https://doi.org/10.1111/j.1460-2695.1992.tb00034.x
  5. McClintock, F. A., 1971, Plasticity Aspects of Fracture, Academic Press, pp. 47-225.
  6. Betego'n, C., Hancock, J. W., 1991, "Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields," J Appl Mech-T ASME, Vol. 58, No. 1, pp. 104-110. doi:https://doi.org/10.1115/1.2897135
  7. O'Dowd, N. P., Shih, C. F., 1991, "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-I. Structure of Fields," J Mech Phys Solids, Vol. 39, No. 8, pp. 989-1015. doi:https://doi.org/10.1016/0022-5096(91)90049-T
  8. Chao, Y. J., Yang, S., Sutton, M. A., 1994, "On the Fracture of Solids Characterized by One or Two Parameters: Theory and Practice," J Mech Phys Solids, Vol. 42, No. 4, pp. 629-647. doi:https://doi.org/10.1016/0022-5096(94)90055-8
  9. Budden, P. J., Ainsworth, R. A., 1999, "The Effect of Constraint on Creep Fracture Assessments," Int J Fracture, Vol. 97, No. 1-4, pp. 237-247. doi:https://doi.org/10.1023/A:1018305919622
  10. Wang, G. Z., Liu, X. L., Xuan, F. Z., Tu, S. T., 2010, "Effect of Constraint Induced by Crack Depth on Creep Crack-Tip Stress Field in CT Specimens," Int J Solids Structures, Vol. 47, No. 1, pp. 51-57. doi:https://doi.org/10.1016/j.ijsolstr.2009.09.015
  11. Ma, H. S., Wang, G. Z., Xuan, F. Z., Tu, S. T., 2015, "Unified Characterization of In-Plane and Out-of-Plane Creep Constraint based on Crack-Tip Equivalent Creep Strain," Eng Fract Mech, Vol. 142, pp. 1-20. doi:https://doi.org/10.1016/j.engfracmech.2015.05.044
  12. Ainsworth, R. A., O'Dowd, N. P., 1995, "Constraint in the Failure Assessment Diagram Approach for Fracture Assessment," J Press Vess-T ASME, Vol. 117, No. 3, pp. 260-267. doi:https://doi.org/10.1115/1.2842121
  13. Xu, L., Zhang, X., Zhao, L., Han, Y., Jing, H., 2016, "Quantifying the Creep Crack-Tip Constraint Effects using a Load-Independent Constraint Parameter Q," Int J Mech Sci, Vol. 119, pp. 320-332. doi:https://doi.org/10.1016/j.ijmecsci.2016.11.002
  14. Tan, J. P., Wang, G. Z., Tu, S. T., Xuan, F. Z., 2014, "Load-Independent Creep Constraint Parameter and its Application," Eng Fract Mech, Vol. 116, pp. 41-57. doi:https://doi.org/10.1016/j.engfracmech.2013.12.015
  15. Lee, H. S., Kim, D. J., Kim, Y. J., Ainsworth, R. A., Budden, P. J., 2018, "Transient Elastic-Plastic-Creep Crack-Tip Stress Fields under Load-Controlled Loading," Fatigue Fracture Eng M, Vol. 41, No. 4, pp. 949-965. doi:https://doi.org/10.1111/ffe.12740
  16. Riedel, H., Rice, J. R., 1980, "Tensile Cracks in Creeping Solids," ASTM International.
  17. Ohji, K., Ogura, K., Kubo, S., 1980 "Stress Field and Modified J-Integral near a Crack Tip under Conditions of Confined Creep Deformation," Journal of the Society of Materials Science, Vol. 29, pp. 465-471. https://doi.org/10.2472/jsms.29.465
  18. Davies, C. M., Mueller, F., Nikbin, K. M., O'Dowd, N. P., Webster, G. A., 2006, "Analysis of Creep Crack Initiation and Growth in Different Geometries for 316H and Carbon Manganese Steels," ASTM International.
  19. Davies, C. M., 2006, Crack Initiation and Growth at Elevated Temperatures in Engineering Steels, Imperial College of Mechanical Engineering, Ph D Thesis.
  20. Bettinson, A. D., 2002, The Influence of Constraint on the Creep Crack Growth of 316H Stainless Steel, Imperial College of Mechanical Engineering, Ph D Thesis.
  21. Kumar, V. G. M. D., German, M. D., Shih, C. F., 1981, "Engineering Approach for Elastic-Plastic Fracture Analysis," Electric Power Research Institute, Palo Alto, EPRI-NP--1931.
  22. Shih, C. F., Needleman, A., 1984, "Fully Plastic Crack Problems, Part 1: Solutions by a Penalty Method," J Appl Mech-T ASME, Vol. 51, No. 1, pp. 48-56. doi:https://doi.org/10.1115/1.3167596
  23. ASTM E1457, 2015, "Standard Test Method for Measurement of Creep Crack Growth Times in Metals," ASTM International.
  24. Galkiewicz, J., Graba, M., 2006, "Algorithm for Determination of σij (nθ), εij (nθ), ui (nθ), dn (n) and In (n) Functions in Hutchinson-Rice-Rosengren Solution and its 3D Generalization," J Theor App Mech-Pol, Vol. 44, No. 1, pp. 19-30.
  25. Tan, M., Celard, N. J. C., Nikbin, K. M., Webster, G. W., 2001, "Comparison of Creep Crack Initiation and Growth in Four Steels Tested in HIDA," Int J Pres Ves Pip, Vol. 78, No. 11-12, pp. 737-747. doi:https://doi.org/10.1016/S0308-0161(01)00085-0
  26. Davies, C. M., Kourmpetis, M., O'Dowd, N. P., Nikbin, K. M., 2007, "Experimental Evaluation of the J or C Parameter for a Range of Crack Geometries," ASTM International.
  27. Tada, H., Paris, P. C., Irwin, G. R., 2000, The Analysis of Cracks Handbook, ASME Press, New York
  28. Hutchinson, J. W., 1968, "Singular Behaviour at the End of a Tensile Crack in a Hardening Material," J Mech Phys Solids, Vol. 16, No. 1, pp. 13-31. doi:https://doi.org/10.1016/0022-5096(68)90014-8
  29. Rice, J. R., Rosengren, G. F., 1968, "Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material," J Mech Phys Solids, Vol. 16, No. 1, pp. 1-12. doi:https://doi.org/10.1016/0022-5096(68)90013-6