• Title/Summary/Keyword: Planar.

Search Result 3,651, Processing Time 0.029 seconds

LAMINAR FLOW OVER A CUBOID (직육면체를 지나는 층류 유동)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Laminar flows over a cube and a cuboid (cube extended in the streamwise direction) are numerically investigated for the Reynolds numbers between 50 and 350. First, vortical structures behind a cube and lift characteristics are scrutinized in order to understand the variation in vortex shedding characteristics with respect to the Reynolds number. As the Reynolds number increases, the flow over a cube experiences the steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows. Similar to the sphere wake, the planar-symmetric flow over a cube can be divided into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency due to regular shedding of vortices with the same strength in time, while the latter has multiple frequency components due to temporal variation in the strength of shed vortices. Second, the effect of the length-to-height ratio of the cuboid on the flow characteristics is investigated for the Reynolds number of 270, at which planar-symmetric vortex shedding takes place behind a cube. With the ratio smaller than one, the flow over the cuboid becomes unsteady asymmetric flow, whereas it becomes steady flow for the ratios greater than one. With increasing the ratio, the drag coefficient first decreases and then increases. This feature is related to the flow reattachment on the side faces of the cuboid.

A Method to Detect Multiple Plane Areas by using the Iterative Randomized Hough Transform(IRHT) and the Plane Detection (평면 추출셀과 반복적 랜덤하프변환을 이용한 다중 평면영역 분할 방법)

  • Lim, Sung-Jo;Kim, Dae-Gwang;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2086-2094
    • /
    • 2008
  • Finding a planar surface on 3D space is very important for efficient and safe operation of a mobile robot. In this paper, we propose a method using a plane detection cell (PDC) and iterative randomized Hough transform (IRHT) for finding the planar region from a 3D range image. First, the local planar region is detected by a PDC from the target area of the range image. Each plane is then segmented by analyzing the accumulated peaks from voting the local direction and position information of the local PDC in Hough space to reduce effect of noises and outliers and improve the efficiency of the HT. When segmenting each plane region, the IRHT repeatedly decreases the size of the planar region used for voting in the Hough parameter space in order to reduce the effect of noise and solve the local maxima problem in the parameter space. In general, range images have many planes of different normal directions. Hence, we first detected the largest plane region and then the remained region is again processed. Through this procedure, we can segment all planar regions of interest in the range image.

Visualization of oxygen distribution on leaf surfaces using VisiSens oxygen planar optode system (VisiSens 산소 평면광 센서 시스템을 이용한 식물 잎 표면의 산소분포 가시화)

  • Hwang, BaeGeun;Kim, HyeJeong;Lee, SangJoon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Oxygen is a key factor in aerobic reactions and most biological activities. Visualization of oxygen distribution of a chemical process or biological system has been a very challenging object despite of its significance and potential impact. To monitor and visualize the spatial distribution of oxygen concentration, various techniques such as electro-chemical probe, polarographic electrode, LIF(laser-induced fluorescence) and so on have been introduced. Oxygen planar optode which utilizes the oxygen quenching of fluorescence light is one of the currently available methods for time-resolved visualization of oxygen distribution on a planar surface. In this study, we utilized VisiSens oxygen planar optode system to visualize the spatial distribution of oxygen concentration on leaves of Korean azalea. As a result, temporal variation of oxygen concentration distribution caused by respiratory activity of the leaf could be quantitatively monitored.

The Design and Experiment of a Planar Patch Sensor for Partial Discharge Diagnostics in 6.6 kV Rotating Machine Stator Windings

  • Yang, Sang-Hyun;Park, Noh-Joon;Park, Dae-Hee;Kim, Hee-Dong;Lim, Kwang-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.173-176
    • /
    • 2009
  • In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide frequency ranges. Discharge sparks and electromagnetic pulses generated from a discharge source, can be detected using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, a planar patch sensor was designed and fabricated using a CST-MWS simulation, and PD signals from an artificially defected stator winding were also measured by the sensor proposed in this study. Furthermore, an HFCT was used as a reference sensor and compared with the proposed new planar patch sensor. In the results of the experiment, the planar patch sensor showed a similar performance to the HFCT sensor.

Planar integrated optics for implementation of fractional fourier transform (분수차 퓨리에 변환을 위한 평판집적 광학계 구현)

  • 박선택;김필수;오차환;송석호
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • We have implemented a planar integrated optics for the fractional Fourier transform (FRT) which has recently been developed as a generalized form of the conventional Fourier transform. FRT optical systems provide versatile tools for analyzing signals and designing hardwares, but require high accuracy and stability in the arrangement of optical components because of their shift-variant characteristic. The planar optical FRT setup composed of free-space optical components integrated on a single glass block makes the FRT of 2-dimensional(2-D) input patterns through the 3-D glass-space. Therefore, taking advantage of the compactness, easy alignment and thermal/mechanical stability, the planar optics can provide a useful approach to realizing an optical fractional correlation system in a practical way. In the experiment, we have obtained accurate FRT results by using the planar integrated optics with 4 different fractional orders of 0.25, 0.5, 0.75, and 1.0.

  • PDF

3D Simultaneous Localization and Map Building (SLAM) using a 2D Laser Range Finder based on Vertical/Horizontal Planar Polygons (2차원 레이저 거리계를 이용한 수직/수평 다각평면 기반의 위치인식 및 3차원 지도제작)

  • Lee, Seungeun;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1153-1163
    • /
    • 2014
  • An efficient 3D SLAM (Simultaneous Localization and Map Building) method is developed for urban building environments using a tilted 2D LRF (Laser Range Finder), in which a 3D map is composed of perpendicular/horizontal planar polygons. While the mobile robot is moving, from the LRF scan distance data in each scan period, line segments on the scan plane are successively extracted. We propose an "expected line segment" concept for matching: to add each of these scan line segments to the most suitable line segment group for each perpendicular/horizontal planar polygon in the 3D map. After performing 2D localization to determine the pose of the mobile robot, we construct updated perpendicular/horizontal infinite planes and then determine their boundaries to obtain the perpendicular/horizontal planar polygons which constitute our 3D map. Finally, the proposed SLAM algorithm is validated via extensive simulations and experiments.

Design of Printed Planar Antenna Suitable for Mobile Wireless Communications (이동 무선 통신을 위한 인쇄형 평면 안테나의 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose a printed planar antenna suitable for mobile wireless communications. Since the printed antenna is easy to fabricate due to simplicity, low cost, and light weight, it is widely used in communications systems. The conventional patch antenna takes too much surface area to be applied to a mobile receiver. Although the size is reduced using the printed antenna, still reasonably wide bandwidth should be considered. To overcome the disadvantage of narrow bandwidth, the substrate should be physically thick and the dielectric constant should be small. In this work, we suggest a simple form of printed planar antenna and show the optimal input impedance depending on the antenna size and operating frequency. The performance evaluation is achieved analytically for a prototype antenna model.

  • PDF

Fabrication of an Optical Polarizer Using Optical Coupling Between Single Mode Fiber and Metal-Clad Planar Waveguide (단일모드 광섬유와 금속클래드 평면도파로 사이의 광 결합을 이용한 편광기 제작)

  • Kim, Gwang-Taek;Song, Jae-Won;Jeong, Ung-Gyu;Gang, Sin-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.53-59
    • /
    • 2000
  • Based on the polarization selectivity of fiber-to-planar waveguide coupler, a novel fiber optic polarizer has been designed and fabricated. The large structural birefringence of a metal-clad planar waveguide enables the polarizer to have wide operating wavelength range. The polymer and gold were used for the guiding layer and cladding layer of the planar waveguide, respectively. The experimental results showed that either TE or TM polarized lightwave could be created by adjusting the thickness of planar waveguide. Operating wavelegth range satisfying more than 16㏈ polarization extinction ratio was 130nm. The average insertion loss of fabricated devices was order of 0.5㏈.

  • PDF

Numerical Study of Laminar Flow in a Combustor with a Planar Fuel Jet (Planar-Jet형 연소내 층류유동의 전산해석)

  • Eom, Jun-Seok;Kim, Do-Hyeong;Yang, Gyeong-Su;Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1644-1651
    • /
    • 2000
  • In this study, the confined laminar flow and transport around a square cylinder with a planar fuel jet are numerically simulated. Both rear and front jets are considered, respectively. In each case, various ratios of the jet velocity to the fixed upstream velocity are taken into consideration. In case of the rear jet, the high mass-fraction region is formed along the streamlines from the jet exit, and the oscillation of the force on the square cylinder eventually disappears as the jet velocity is close to the upstream velocity. In case of the front jet, drag is significantly reduced when the jet velocity ratio is grater than 1. The results obtained exhibit flow and scalar-mixing charactered in a planar combustor.

3D Reconstruction Using the Planar Homograpy (평면 호모그래피를 이용한 3차원 재구성)

  • Yoon Yong-In;Ohk Hyung-Soo;Choi Jong-Soo;Oh Jeong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.381-390
    • /
    • 2006
  • This paper proposes a new technque of the camera calibration to be computed a homography between the planar patterns taken by a single image to be located at the three planar patterns from uncalibrated images. It is essential to calibrate a camera for 3-dimensional reconstruction from uncalibrated image. Since the proposed method should be computed from the homography among the three planar patterns from a single image, it is implemented to more easily and simply to recover 3D reconstruction of an object than the conventional. Experimental results show the performances of the proposed method are the better than the conventional. We demonstrate examples of recovering 3D reconstruction using the proposed algorithm from uncalibrated images.