• Title/Summary/Keyword: Planar Substrate

Search Result 279, Processing Time 0.031 seconds

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF

Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon

  • Lee, Heon-Bok;Baek, Kyong-Hum;Lee, Myung-Bok;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.96-100
    • /
    • 2005
  • The planar Schottky diodes were fabricated and modeled to probe the device applicability of the cracked GaN epitaxial layer on a (111) silicon substrate. On the unintentionally n-doped GaN grown on silicon, we deposited Ti/Al/Ni/Au as the ohmic metal and Pt as the Schottky metal. The ohmic contact achieved a minimum contact resistivity of $5.51{\times}10.5{\Omega}{\cdot}cm^{2}$ after annealing in an $N_{2}$ ambient at $700^{\circ}C$ for 30 sec. The fabricated Schottky diode exhibited the barrier height of 0.7 eV and the ideality factor was 2.4, which are significantly lower than those parameters of crack free one. But in photoresponse measurement, the diode showed the peak responsivity of 0.097 A/W at 300 nm, the cutoff at 360 nm, and UV/visible rejection ratio of about $10^{2}$. The SPICE(Simulation Program with Integrated Circuit Emphasis) simulation with a proposed model, which was composed with one Pt/GaN diode and three parasitic diodes, showed good agreement with the experiment.

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.

Design and Manufacture of Traveling-wave Electro-optic Modulator for X-band LFM Signal Generation (X-대역 LFM 신호생성을 위한 진행파형 전광변조기의 설계 및 제작)

  • Yi, Minwoo;Yoo, Sungjun;Bae, Youngseok;Jang, Sunghoon;Ryoo, Joonhyung;Shin, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.610-618
    • /
    • 2021
  • In this paper, a photonic-based microwave system technology is described, and a traveling-wave electro-optic modulator is designed and manufactured as a key component. The fabricated modulator is composed of a metal diffusion waveguide for optical transmission and a planar waveguide electrode on lithium niobate substrate for microwave transmission. The electro-optic response bandwidth of I and Q channels in a fabricated dual parallel Mach-Zehnder modulator were measured for 27.67 and 28.11 GHz, respectively. Photonic four times up-converted X-band frequency and linear frequency modulated signal were confirmed using the fabricated electro-optic modulator by S-band input signal. The confirmed broadband signal can be applied to a microwave system for surveillance and high-resolution ISAR imaging.

Slot Antenna Embedded in a PCB for Zigbee Communication (지그비 통신용 PCB 내장형 슬롯 안테나)

  • Woo, Hee-Sung;Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.223-228
    • /
    • 2021
  • In this paper, we proposed a slot-type antenna with microstrip feed embedded in a PCB for Zigbee communication (2.4 ~ 2.484 GHz). The proposed antenna is designed on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 50×65 mm2. Through simulations, trends of design parameters are analyzed and optimized, and the proposed antenna composed with three slots satisfy the frequency band. The measured impedance bandwidths (|S11| ≤ -10 dB) of fabricated antenna are 900 MHz (2 ~ 2.9 GHz) in Zigbee frequency band. In addition, the radiation pattern showed omnidirectional characteristics for E and H-planes, and the gain of antenna in Zigbee frequency band was 1.782 dBi.

Characteristics of a planar Bi-Sb multijunction thermal converter with Pt-heater (백금 히터가 내장된 평면형 Bi-Sb 다중접합 열전변환기의 특성)

  • Lee, H.C.;Kim, J.S.;Ham, S.H.;Lee, J.H.;Lee, J.H.;Park, S.I.;Kwon, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.154-162
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter with high thermal sensitivity and small ac-dc transfer error has been fabricated by preparing the bifilar thin film Pt-heater and the hot junctions of thin film Bi-Sb thermopile on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-diaphragm, which functions as a thermal isolation layer, and the cold junctions on the dielectric membrane supported with the Si-substrate, which acts as a heat sink, and its ac-dc transfer characteristics were investigated with the fast reversed dc method. The respective thermal sensitivities of the converter with single bifilar heater were about 10.1 mV/mW and 14.8 mV/mW in the air and vacuum, and those of the converter with dual bifilar heater were about 5.1 mV/mW and 7.6 mV/mW, and about 5.3 mV/mW and 7.8 mV/mW in the air and vacuum for the inputs of inside and outside heaters, indicating that the thermal sensitivities in the vacuum, where there is rarely thermal loss caused by gas, are higher than those in the air. The ac-dc voltage and current transfer difference ranges of the converter with single bifilar heater were about ${\pm}1.80\;ppm$ and ${\pm}0.58\;ppm$, and those of the converter with dual bifilar heater were about ${\pm}0.63\;ppm$ and ${\pm}0.25\;ppm$, and about ${\pm}0.53\;ppm$ and ${\pm}0.27\;ppm$, respectively, for the inputs of inside and outside heaters, in the frequency range below 10 kHz and in the air.

  • PDF

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

A Design of Multi-Band Chip Antenna for Mobile Handsets (휴대단말기용 다중 대역 칩 안테나 설계)

  • Cho, In-Ho;Jung, Jin-Woo;Lee, Cheon-Hee;Lee, Yong-Hee;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.477-483
    • /
    • 2008
  • The paper introduces mobile handset multi-band chip antenna to be used on meander line PIFA structure and parasite patch. The proposed antenna uses an FR-4 substrate. The top layer is consist of meander lines PIFA structure to implement GSM900 and is connected with each rad and meander line on the via-hole for maximize space efficiency. The middle layer is designed with the signal line and gap to implement a DCS and PCS bands, the bottom layer which is added to a parasite patch on the ground can be show an adjust of frequency and impedance character by the connection of the radiators of middle layer and coupling. The fabricated antenna with the dimension of $28{\times}6{\times}4\;mm^3$. The ground plane a dimension of $45{\times}90\;mm$, designed by a commercial software CST simulator. The experimental results show that the bandwidth for(VSWR<3) is 90($875{\sim}965$) MHz in GSM900 band operation and 380($1,670{\sim}2,050$) MHz in DCS, PCS band operation. The maximum gains of antenna are 0.25 dBi, 3.65 dBi and 3.3 dBi at resonance frequencies and it has omni-directional pattern practically.

Homoepitaxial Growth Mode of $Si(5\;5\;12)-2\times1$ Confirmed by Scanning Tunneling Microscope (STH) (주사터널링현미경(STM) 기법으로 확인된 $Si(5\;5\;12)-2\times1$ 호모에피텍시 성장 방법)

  • Kim Hidong;Cho Yumi;Seo Jae M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The homoepitaxy of Si(5 5 12) at $495^{\circ}C$ has been studied by Scanning Tunneling Microscopy under ultrahigh vacuum. A Si-dimer is the basic building-block and preferentially adsorbs on a unique site, that is, the Si-dimer/adatom site at the (337) and the (225) subsections within the Si(5 5 12) unit cell. The Si(5 5 12) unit cell is faceted to $3\times(337)$ subsections filled with Si-addimers and $1\times(113)$ subsection. In this step the tetramer at the other (337) section within the unit cell is transformed to a dimer/adatom site which can accept Si-dimers. Each (337) section is faceted to $1\times(112)\;and\;1\times(113)$, and then finally the unit cell of Si(5 5 12) is faceted to $3\tiems(112)\;and\;4\times(113)$ and forms the facet of effective height, $2.34{\AA}$. In this step, mutual transformation between the honeycomb chain and the dimer/adatom occurs. Finally, the valley between (112) and (113) facets is filled. If once the last step is completed, the uniform and planar Si(5 5 12) terrace is recovered. From the present study, therefore, it can be concluded that the homoepitaxy on Si(5 5 12) is periodically achieved and such growth mode is quite unique since faceting of the substrate-unit-cell plays a critical role for controlling uniformity of the overlayer.