Browse > Article

Homoepitaxial Growth Mode of $Si(5\;5\;12)-2\times1$ Confirmed by Scanning Tunneling Microscope (STH)  

Kim Hidong (Department of Physics, Chonbuk National University)
Cho Yumi (Department of Physics, Chonbuk National University)
Seo Jae M. (Department of Physics, Chonbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.15, no.1, 2006 , pp. 37-44 More about this Journal
Abstract
The homoepitaxy of Si(5 5 12) at $495^{\circ}C$ has been studied by Scanning Tunneling Microscopy under ultrahigh vacuum. A Si-dimer is the basic building-block and preferentially adsorbs on a unique site, that is, the Si-dimer/adatom site at the (337) and the (225) subsections within the Si(5 5 12) unit cell. The Si(5 5 12) unit cell is faceted to $3\times(337)$ subsections filled with Si-addimers and $1\times(113)$ subsection. In this step the tetramer at the other (337) section within the unit cell is transformed to a dimer/adatom site which can accept Si-dimers. Each (337) section is faceted to $1\times(112)\;and\;1\times(113)$, and then finally the unit cell of Si(5 5 12) is faceted to $3\tiems(112)\;and\;4\times(113)$ and forms the facet of effective height, $2.34{\AA}$. In this step, mutual transformation between the honeycomb chain and the dimer/adatom occurs. Finally, the valley between (112) and (113) facets is filled. If once the last step is completed, the uniform and planar Si(5 5 12) terrace is recovered. From the present study, therefore, it can be concluded that the homoepitaxy on Si(5 5 12) is periodically achieved and such growth mode is quite unique since faceting of the substrate-unit-cell plays a critical role for controlling uniformity of the overlayer.
Keywords
Scanning tunneling microscope; High Miller indices; Silicon- surface; Homoepitaxy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Liu, M. Takeguchi, H. Yasuda, and K. Furuya, J. Cryst. Growth 237, 188 (2002)   DOI
2 K. Yoo, S. J. Tang, P. T. Sprunger, I. Benito, J. Ortega, F. Flores, P. C. Snijders, M. C. Demeter, and H. H. Weitering, Surf. Sci. 514, 100 (2002)   DOI
3 A. A. Baski and L. J. Whitman, J. Vac. Sci. Technol. B 14, 992 (1995)   DOI
4 A. A. Baski, K. M. Saoud, and K. M. Jones, Appl. Surf. Sci. 182, 216 (2001)   DOI
5 A. A. Baski, S. C. Erwin, and L. J. Whitman, Science 269, 1556 (1995)   DOI
6 A. A. Baski, S. C. Erwin, and L. J. Whitman, Surf. Sci. 423, L265 (1999)   DOI   ScienceOn
7 W. Ranke and Y. R. Xing, Surf. Sci. 381, 1 (1997)   DOI   ScienceOn
8 S. C. Erwin, A. A. Baski, L. J. Whitman, and R. E. Rudd, Phys. Rev. Lett. 83, 1818 (1999)   DOI
9 S. Jeong, H. Jeong, S. Cho, and J. M. Seo, Surf. Sci. 557, 183 (2004)   DOI
10 B. Voigtl,nder, Surf. Sci. Rep. 43, 127 (2001)   DOI   ScienceOn