• Title/Summary/Keyword: Planar Patterns

Search Result 150, Processing Time 0.032 seconds

Flow arrest during carotid artery stenting with a distal embolic protection device: A single-center experience and clinical implications

  • Noah Hong;Jeong-Mee Park;Seung Bin Kim;Young-Je Son
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.2
    • /
    • pp.163-173
    • /
    • 2024
  • Objective: We aimed to investigate the incidence of flow arrest during carotid artery stenting (CAS) with filter-type embolic protection device (EPD), identify any predisposing factors for those situations, and contemplate intraprocedural precautionary steps. Methods: CAS was performed in 128 patients with 132 arteries using filter-type EPD. The characteristics of treated patients and arteries were compared between groups with and without flow arrest. Results: The incidence of flow arrest during CAS with filter-type EPD was 17.4%. In flow arrest group, cases of vulnerable plaques (p=0.02) and symptomatic lesions (p=0.01) were significantly more common, and there were more cases of debris captured by EPD in a planar pattern (p<0.01). Vulnerable plaques were significantly more common in the procedures showing a planar pattern than in the cases with other patterns (p<0.01). Flow arrest group showed a significantly higher rate of ischemic complications (p<0.05), although there were no significant periprocedural neurological changes. The planar pattern of captured debris in filter-type EPD was the only significant risk factor for flow arrest (adjusted odds ratio 88.44, 95% confidence interval 15.21-514.45, p<0.05). Conclusions: Flow arrest during CAS with filter-type EPD is not uncommon and associated with increased ischemic complications. Symptomatic stenoses and vulnerable plaque are related to this event. The planar pattern of captured debris on the EPD was the only significant risk factor for the flow arrest. Clinicians must pay attention to the occurrence of flow arrest and react quickly when performing CAS.

Different crystalline properties of undoped-GaN depending on the facet of patterns fabricated on a sapphire substrate

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Kim, Jae-Su;Kim, Jin-Soo;Lee, Jin-Hong;Noh, Young-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.173-173
    • /
    • 2010
  • Recently, a patterned sapphire substrate (PSS) has been intensively used as one of the effective ways to reduce the dislocation density for the III-nitride epitaxial layers aiming for the application of high-performance, especially high-brightness, light-emitting diodes (LEDs). In this paper, we analyze the growth kinetics of the atoms and crystalline quality for the undopped-GaN depending on the facets of the pattern fabricated on a sapphire substrate. The effects of the PSS on the device characteristics of InGaN/GaN LEDs were also investigated. Several GaN samples were grown on the PSS under the different growth conditions. And the undoped-GaN layer was grown on a planar sapphire substrate as a reference. For the (002) plane of the undoped-GaN layer, as an example, the line-width broadening of the x-ray diffraction (XRD) spectrum on a planar sapphire substrate is 216.0 arcsec which is significantly narrower than that of 277.2 arcsec for the PSS. However, the line-width broadening for the (102) plane on the planar sapphire substrate (363.6 arcsec) is larger than that for the PSS (309.6 arcsec). Even though the growth parameters such as growth temperature, growth time, and pressure were systematically changed, this kind of trend in the line-width broadening of XRD spectrum was similar. The emission wavelength of the undoped-GaN layer on the PSS was red-shifted by 5.7 nm from that of the conventional LEDs (364.1 nm) under the same growth conditions. In addition, the intensity for the GaN layer on the PSS was three times larger than that of the planar case. The spatial variation in the emission wavelength of the undoped-GaN layer on the PSS was statistically ${\pm}0.5\;nm$ obtained from the photoluminescence mapping results throughout the whole wafer. These results will be discussed in terms of the mixed dislocation depending on the facets and the period of the patterns.

  • PDF

The Variation of Texture in Planar isotropic Ni Electrodeposits (평명등방성 Ni 도금층의 집합조직의 변화)

  • 김인수;이세광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.262-265
    • /
    • 1998
  • Nickel Plating improves on the corrosion resistance of materials in acid and moisture environment. In this study, we investigated the surface morphology, XRD patterns and pole figures of the various types of Ni electrodeposits. The texture of Ni electrodeposits changed from <100> to <111> through <110> with increasing the temperature of electrolyte and the concentration of nickel ion. The texture of Ni electrodeposits changed from <100> to <100> after annealing. Also the <110> texture changed to the <√310> texture after annealing.

  • PDF

Detecting System of Moving Object Using Directional Antennae (지향성 안테나를 이용한 이동체 감지 시스템)

  • 이성필;김종수;윤여경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.101-104
    • /
    • 1996
  • A new detecting system for moving objects of coastal region has been designed by directional antenna and driving circuits. The designed system has been investigated by CAD for linear and planar antenna arrays of various radiating elements for antenna simulations and by P-spice of device simulations. For detecting the displacement of moving objects, we constructed four wideband dipole antenna, diode switching circuit, mixer, filter and amplifier. The results of antenna receiver were shown a possibility of distance measuring system through phase difference of radiation patterns in antenna simulation

  • PDF

Liquid Crystal Droplet Patterns to Monitor Catalase Activity at Femtomolar Levels

  • Yoon, Stephanie;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2704-2710
    • /
    • 2014
  • Catalase (CAT) decomposes hydrogen peroxide that is toxic to the body. In this study, simple and sensitive detector has been developed for observing catalase activity using liquid crystal droplet system. Microscale LC droplet patterns are formed by spreading aldehyde-doped nematic liquid crystal on pre-treated glass slides. When hydrogen peroxide is added, aldehyde is oxidized and amphiphiles are formed. Dodecanoates cause the pattern to transit from bright to dark as they self-assemble to form a carboxyalte monolayer at the interface. When a drop of pre-incubated CAT and hydrogen peroxide mixture is placed onto the pattern, bright fan-shape is observed. This planar optical appearance indicates that catalase has decomposed hydrogen peroxide. Compared to the detectors that have been previously developed, this system is more sensitive with detection limit of 1fM. This research suggests further studies to be on LC droplet patterning to develop highly sensitive and methodologically simple sensors for various chemicals.

Compliant Stage for Nano Patterning Machine (나노 패턴 장비용 컴플라이언스 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1065-1068
    • /
    • 2003
  • The nano imprint process is one of the next generation lithography has been mentioned as one of major nanoreplication techniques because it is simple process, low cost, high replication fidelity and relatively high throughput. This process requires a surface contact between a template with patterns and a wafer on a stage. After contact, the vertical moving the template to the wafer causes some directional motions of the stage. Thus the stage must move according to the motions of the template to avoid the damage of the transferred patterns on the wafer. This study is to develop the wafer stage with a passive compliance to overcome the damage. This stage is designed with the concept like that it has a monolithic, symmetry and planar 6-DOF mechanism.

  • PDF

A Characteristics of Dual-Band PIFA for Mobile Phones Using H-Types Slits in the Radiators (방사부의 H형 Silt을 이용한 이동통신 단말기용 이중대역 PIFA 안테나 특성)

  • Lee Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.84-91
    • /
    • 2005
  • In this papers, we study the characteristics of dual band PIFA(Planar Inverted F antenna) for handy phones using H-type silt in the antenna radiators. Slit types on the antenna radiator vary resonance mechanism of the antenna and affect reactance component of impedance for the antenna. Therefore the antennas resonate at the dual band(cellular -band, Korea-PCS band), the bandwidth, input impedance and radiation patterns of the proposed antenna is affected by the silt length on the radiators. In order to demonstrate the validity of the proposed theory, it is implementation the antenna of the 4 types. From results for the experiment of the implementation antenna, -5 dB bandwidth of return loss is content with the allocated bandwidth of Cellular and Korea-PCS system the gains of the antenna is about -8$\~$ - 1 dB, the radiation patterns for x-polarized or y-polarized are omnidirectional pattern. From above the results of this papers, it is conclude mobile phones antenna for handy phones using this papers results.

Optimal design of a sparse planar array sensor for underwater vehicles (수중 운동체용 희소 평면배열 센서의 최적 설계)

  • Afzal, Muhammad Shakeel;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.53-59
    • /
    • 2018
  • In this study, a new design method is developed to optimize the structure of an underwater sparse array sensor. The purpose of this research is to design the structure of a sparse array that has the performance equivalent to a fully sampled array. The directional factor of a sparse planar array is derived as a function of the structural parameters of the array. With the derived equation, the structure of the sparse array sensor is designed to have the performance equivalent to that of the fully array sensor through structural optimization of the number and location of transmitting and receiving elements in the array. The designed sparse array sensor shows beam patterns very close to those of the fully array sensor in terms of PSLL (Peak Side Lobe Level) and MLBW (Main Lobe Beam Width), which confirms the effectiveness of the present optimal design method. Further, the validity of the analytic beam patterns is verified by comparing them with those from the FEA (Finite Element Analysis) of the optimized sparse array structure.

Measuring Methods for Two-dimensional Position Referring to the Target Pattern (참조패턴 기반의 2차원 변위 측정 방법론)

  • Jung, Kwang Suk;Lee, Sang Heon;Park, Sung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

Paneling of Curved NURBS Surface through Marching Geodesic - Application on Compound Surface - (일방향 지오데식을 활용한 곡면 형상의 패널링 - 복합 곡면을 중심으로 -)

  • Hong, Ji-Hak;Sung, Woo-Jae
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.42-52
    • /
    • 2021
  • Paneling building facades is one of the essential procedures in building construction. Traditionally, it has been an easy task of simply projecting paneling patterns drawn in drawing boards onto 3d building facades. However, as many organic or curved building shapes are designed and constructed in modern architectural practices, the traditional one-to-one projection is becoming obsolete for the building types of the kind. That is primarily because of the geometrical discrepancies between 2d drawing boards and 3d curved building surfaces. In addition, curved compound surfaces are often utilized to accommodate the complicated spatial programs, building codes, and zoning regulations or to achieve harmonious geometrical relationships with neighboring buildings in highly developed urban contexts. The use of the compound surface apparently makes the traditional paneling pattern projection more challenging. Various mapping technics have been introduced to deal with the inabilities of the projection methods for curved facades. The mapping methods translate geometries on a 2d surface into a 3d building façade at the same topological locations rather than relying on Euclidean or Affine projection. However, due to the intrinsic differences of the planar 2d and curved 3d surfaces, the mapping often comes with noticeable distortions of the paneling patterns. Thus, this paper proposes a practical method of drawing paneling patterns directly on a curved compound surface utilizing Geodesic, which is faithful to any curved surface, to minimize unnecessary distortions.