DOI QR코드

DOI QR Code

Optimal design of a sparse planar array sensor for underwater vehicles

수중 운동체용 희소 평면배열 센서의 최적 설계

  • Received : 2017.11.15
  • Accepted : 2018.01.30
  • Published : 2018.01.31

Abstract

In this study, a new design method is developed to optimize the structure of an underwater sparse array sensor. The purpose of this research is to design the structure of a sparse array that has the performance equivalent to a fully sampled array. The directional factor of a sparse planar array is derived as a function of the structural parameters of the array. With the derived equation, the structure of the sparse array sensor is designed to have the performance equivalent to that of the fully array sensor through structural optimization of the number and location of transmitting and receiving elements in the array. The designed sparse array sensor shows beam patterns very close to those of the fully array sensor in terms of PSLL (Peak Side Lobe Level) and MLBW (Main Lobe Beam Width), which confirms the effectiveness of the present optimal design method. Further, the validity of the analytic beam patterns is verified by comparing them with those from the FEA (Finite Element Analysis) of the optimized sparse array structure.

본 연구에서는 수중 희소배열 센서의 구조를 최적설계하기 위한 새로운 방안을 개발하였다. 본 연구의 목적은 전체 배열센서와 대등한 성능을 가지는 희소 배열센서의 구조를 설계하는 것이다. 우선 희소 평면배열 센서의 지향계수를 배열 구조변수들의 함수로 유도하였다. 유도된 식을 사용하여 희소 배열센서 구성 소자의 개수와 위치를 최적화함으로써 그 성능이 전체 배열 센서의 성능과 대등하도록 희소배열 센서의 구조를 설계하였다. 설계된 희소 배열센서는 최대 부엽 레벨과 주엽의 빔폭 면에서 전체 배열 센서와 대등한 빔 패턴을 보였는데, 이로써 본 연구의 최적설계 기법의 효용성이 확인되었다. 나아가 수식에 의한 빔 패턴 해석 결과의 타당성은 최적화된 희소배열 구조에 대한 유한요소해석 결과와 비교함으로써 검증하였다.

Keywords

References

  1. G. R. Lockwood, P. C. Li, M. O'Donnell, and F. S. Foster, "Optimizing the radiation pattern of sparse periodic linear arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 7 (1996). https://doi.org/10.1109/58.484457
  2. J. T. Yen, and S. W. Smith, "Real-time rectilinear volumetric imaging using a periodic array," Ultrasound Med. Biol. 28, 923 (2002). https://doi.org/10.1016/S0301-5629(02)00543-4
  3. A. Austeng, and S. Holm, "Sparse 2-D arrays for 3-D phased array imaging-design methods," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1073 (2002). https://doi.org/10.1109/TUFFC.2002.1026019
  4. B. Diarra, H. Liebgott, P. Tortoli, and C. Cachard, "2D matrix array optimization by simulated annealing for 3D hepatic imaging," Proc. IEEE Int. Ultrason. Symp., 2011, 1595 (2011).
  5. D. H. Turnbull, and F. S. Foster, "Beam steering with pulsed two-dimensional transducer arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 320 (1991). https://doi.org/10.1109/58.84270
  6. A. D. Belegudu, and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering: 2nd Ed. (Cambridge University Press, New York, 2014), pp. 195.
  7. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics 4th ed. (Wiley, New York, 2000) pp. 182.
  8. H. L. van Trees, Optimum Array Processing (Wiley, New York, 2002) pp. 235.
  9. S. Lee and Y. Roh, "Optimal design of a planar array of micro-machined ultrasonic transducers," Key Eng. Mater., 270, 1089 (2004).
  10. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007) pp. 221.
  11. S. Pyo and Y. Roh, "Optimization of the structure of 1-3 piezocomposite materials to maximize the performance of an underwater acoustic transducer using equivalent circuit models and finite element method," Jpn. J. Appl. Phys. 54, 07HB03 (2015). https://doi.org/10.7567/JJAP.54.07HB03
  12. H. N. Wu and C. Liu, "Planar array synthesis with sidelobe reduction and null control using invasive weed optimization," Prog. Electromagn. Res. Pier. 33, 83 (2013). https://doi.org/10.2528/PIERM13090301