• Title/Summary/Keyword: Pitch Measurement

Search Result 264, Processing Time 0.033 seconds

Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis (광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석)

  • Kim Jong-Ahn;Kim Jae-Wan;Park Byong-Chon;Kang Chu-Shik;Eom Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

150 nm Pitch Measurement using Metrological AFM (길이 소급성을 갖는 AFM을 이용한 150nm 피치 측정)

  • ;I. Misumi;S. Gonda;T. Kurosawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.264-267
    • /
    • 2003
  • Pitch measurements of 150 nm pitch one-dimensional grating standards were carried out using an contact mode atomic force microscopy(C-AFM) with a high resolution three-axis laser interferometer. It was called as 'Nano-metrological AFM' In Nano-metrological AFM, Three laser interferometers were aligned well to the end of AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$-stablilzed He-Ne laser at a wavelength of 633 nm. So, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM has a traceability to the length standard directly. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement(GUM). The Primary source of uncertainty in the pitch-measurements was derived from repeatability of pitch-measurement, and its value was approx 0.186 nm. Expanded uncertainty(k=2) of less than 5.23 nm was obtained. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

  • PDF

Pitch Measurement of One-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation (미터 소급성을 갖는 원자간력 현미경을 이용한 1차원 격자 피치 측정과 불확도 평가)

  • Kim Jong-Ahn;Kim Jae Wan;Park Byong Chon;Eom Tae Bong;Kang Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 2005
  • We measured the pitch of one-dimensional (ID) grating specimens using a metrological atomic force microscope (M-AFM). The ID grating specimens a.e often used as a magnification standard in nano-metrology, such as scanning probe microscopy (SPM) and scanning electron microscopy (SEM). Thus, we need to certify the pitch of grating specimens fur the meter-traceability in nano-metrology. To this end, an M-AFM was setup at KRISS. The M-AFM consists of a commercial AFM head module, a two-axis flexure hinge type nanoscanner with built-in capacitive sensors, and a two-axis heterodyne interferometer to establish the meter-traceability directly. Two kinds of ID grating specimens, each with the nominal pitch of 288 nm and 700 nm, were measured. The uncertainty in pitch measurement was evaluated according to Guide to the Expression of Uncertainty in Measurement. The pitch was calculated from 9 line scan profiles obtained at different positions with 100 ㎛ scan range. The expanded uncertainties (k = 2) in pitch measurement were 0.10 nm and 0.30 nm for the specimens with the nominal pitch of 288 nm and 700 nm. The measured pitch values were compared with those obtained using an optical diffractometer, and agreed within the range of the expanded uncertainty of pitch measurement. We also discussed the effect of averaging in the measurement of mean pitch using M-AFM and main components of uncertainty.

Pitch Measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic Force Microscope

  • Jonghan Jin;Ichiko Misumi;Satoshi Gonda;Tomizo Kurosawa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.19-25
    • /
    • 2004
  • Pitch measurements of 150 nm one-dimensional grating standards were carried out using a contact mode atomic force microscopy with a high resolution three-axis laser interferometer. This measurement technique was named as the 'nano-metrological AFM'. In the nano-metrological AFM, three laser interferometers were aligned precisely to the end of an AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$ stabilized He-Ne laser at a wavelength of 633 nm. Therefore, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM could be used to directly measure the length standard. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). The primary source of uncertainty in the pitch-measurements was derived from the repeatability of the pitch-measurements, and its value was about 0.186 nm. The average pitch value was 146.65 nm and the combined standard uncertainty was less than 0.262 nm. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

Application of Image Processing Technique to Improve Production Efficiency of Fine Pitch Hole Based on Laser (레이저 미세피치 홀 가공의 생산효율성 향상을 위한 영상처리 측정 기법 적용)

  • Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.320-324
    • /
    • 2010
  • Multi-Layer Ceramic Circuit(MLCC) in the face of thousands of fine pitch multi hole is processed. However, the fine pitch multi hole has a size of only a few micrometers. Therefore, in order to curtail the measurement time and reduce error, the image processing measurement method is required. So, we proposed an image processing measurement algorithm which is required to accurately measure the fine pitch multi hole. The proposed algorithm gets image of the fine pitch multi hole, extracts object from the image by morphological process, and extracts the parameters of its position and feature by edge detecting process. In addition, we have used the sub-pixel algorithm to improve accuracy. As a result, the proposed algorithm shows 97% test-retest measurement reliability within 2 ${\mu}m$. We found that the algorithm was wellsuited for measuring the fine pitch multi hole.

Development of Computer Aided Measurement and Compensation System for Linear Pitch Error Correction in CNC Machine Tools Implementing a New Optimal Correction Algorithm (CNC 공작기계 선형피치오차의 최적 보정알고리즘을 구현하는 자동 측정 및 보정 시스템의 개발)

  • 이석원;박희재;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • Linear displacement accuracy is one of the most important factors that determine machine tool accuracy The laser interferometer has been usually recommended for the measurement of linear displacement accuracy. In this paper, microcomputer aided measurement and compensation system has been developed for the pitch error in a CNC machine tool. For accurate pitch error calculation. the analysis code for the pitch error has been also implemented according to the international standards (ISO). The PC based automatic compensation system for the pitch error is also implemented. A new algorithm for calculating optimum value for pitch error compensation is proposed, minimizing the deviation at each target points. The development system has been applied to a practical CNC maching center and the performance has been demonstrated.

  • PDF

Precision Measurement System forBall Screw Pitch Error (볼스크류 전구간 피치오차 측정시스템)

  • 박희재;김인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.279-285
    • /
    • 1993
  • This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.

  • PDF

A Study on the Noise-Level Measurement Using the Energy and Relation of Closed Pitch (에너지와 인근 피치간에 유사도를 이용한 잡음레벨 검출에 관한 연구)

  • Kang, In-Gyu;Lee, Ki-Young;Bae, Myung-Jin
    • Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.157-164
    • /
    • 2004
  • Human has average pitch-level when speak naturally. That is 'Habitual pitch level'. However, if noise added at speech, the pitch-wave is changed irregularly. We can estimate noise level of speech by using this point. This paper calculates energy level of the input speech, pitch period from of above limited energy level by NAMDF (Normalized Average Magnitude Difference Function) method, after cut each frame by pitch period unit, and propose a method that estimate noise level through closed pitch of input speech.

  • PDF

Study on the Estimation of Measurement Uncertainty in MOI Measurement (관성모멘트 측정에서의 불확도 추정기법 연구)

  • Kim, Kwang-Ro;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.797-802
    • /
    • 2013
  • In this paper, using the mass/CG measurement equipment and the MOI measurement equipment developed in-house, Pitch MOI and Roll MOI of test specimen were measured and measurement uncertainties on MOI were studied. The possible factors of the measurement uncertainty that could affect accuracy of MOI measurement were mass, spring, frequency, and length measurement-related elements. The each combined standard uncertainty of pitch MOI and roll MOI was estimated from the uncertainties of the above various factors.

Fabrication, AC Loss Measurement and Analysis of Bi-2223 Conductors with Respect to Various Twist Pitch (트위스트 피치를 고려한 Bi-2223 선재 제작과 AC 손실 측정 및 분석)

  • Jang, Mi-Hye;Chu, Yong;Lim, Jun-Hyung;Joo, Jin-Ho;Ko, Tae-Kuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.589-595
    • /
    • 2000
  • In this papre, AC losses of Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist and different twist pitch(8, 10, 13, 30, 50, 70 mn). The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-probe method. And the AC loss measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the critical current is larger non-twist than twisted filament. And, the AC loss by Norris equation is higher non-twisted tape than 13mm twisted tape. Also, it is confirmed that of AC loss of tape having non-twist pitch larger than those having differnet twist pitch.

  • PDF