• Title/Summary/Keyword: Pipe depth

Search Result 376, Processing Time 0.025 seconds

An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment (배관실험을 통한 국부감육 배관의 손상거동 평가)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 진종태;손인수;윤한익
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper a dynamic behavior of a simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect of the velocity of the fluid on the mid-span deflection appears more greatly.

Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration (이산화탄소 해양격리 심해주입시스템의 초기설계)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

Numerical and Experimental studies on pipeline laying for Deep Ocean Water (해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구)

  • JUNG DONG-HO;KIM HYOUN-JOO;KIM JIN-HA;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF

A study on the Vertical Earth Pressure in rigid buried pipe by numerical approach (강성매설관에 작용하는 연직토압에 관한 수치적 연구)

  • Park Sang-Won;Han Myung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.661-666
    • /
    • 2005
  • In this Paper, to calculate vertical earth pressure affected from several factors in case of rigid buried pipe with cohesionless backfill soil. The result from PENTAGON 3D is compared with several equation's result such as the Janssen, Marston, Spangler, Handy's equation. Result of study shows that vertical earth pressure of each equation is affected by backfill width, backfill depth and wall friction. And vertical earth pressure is linearly increased with backfill depth and backfill width. Marston's equation and Handy's equation are overestimated and FEM(Finite Element method) analysis and Janssen's Silo equation are affected by more backfill depth than backfill width.

  • PDF

Water saving irrigation method in paddy fields (용수절약형 논관개 기법(관개배수 \circled1))

  • 정상옥;안태홍
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.108-113
    • /
    • 2000
  • A field study was performed to investigate the effect of water saving irrigation method on water use efficiency and rice yield. The field plot was 40a (40 ${\times}$ 100m) in size and located at Buryangmyun, Kimjae city, Chonbuk province. Field measurements were made during the growing seasons, May to September of the year 1998 and 1990. Irrigation water volume, drainage water volume, rainfall and ponding depth were measured. Irrigation water management practice employed was such that to keep the ponding depth about 3 to 4cm by intermittent irrigation with drying the soil surface until hair cracks emerge before the next irrigation. The amounts of water volume irrigated and drained were measured by pipe flow meter and ponding depth was observed by using a partly buried 120mm diameter PVC pipe. The results showed that the irrigation water depths, the rainfalls, and the drainage depths were 379mm, 458mm, and 448mm in 1988, and 274mm, 819mm, and 736mm in 1990, respectively. The average yield was 590kg per 10a. The water saving irrigation method saved irrigation water by about 20% with higher yield compared with the traditional method.

  • PDF

Calculations of probability of pipe breakage according to service year (상수도관의 사용연수에 따른 관파괴확률 산정)

  • Kwon, Hyuk Jae;Kim, Hyeong Gi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.555-563
    • /
    • 2019
  • Reduced thickness of the water pipes due to corrosion makes it difficult to perform the original functions since corrosion in metallic water pipes can occur over time. In this study, reliability model that can estimate the probability of pipe breakage is developed regarding corrosion depth increment according to service year. Probability of pipe breakage was calculated by FORM(First Order Reliability Method) and unsteady analysis was performed to analyze the statistical properties of water pressure. And KCIP(Korea Cast Iron Pipe) equation was adopted for the reliability function. Furthermore, change of pipe thickness was estimated by Nahal and Khelif equation and Romanoff equation. Therefore, pipe thickness was calculated due to change of corrosion depth and probability of pipe breakage was calculated and compared with 10, 20, 30 service years. From the results, probability of pipe breakage for network A is gradually increased from 6.8% to 8.6% according to service year of 10, 20, 30 when Nahal and Khelif equation is applied. And probability of pipe breakage for network A is also gradually increased from 6.4% to 8.9% according to service year of 10, 20, 30 when Romanoff equation is applied.

Applicability Analysis of an Improved Multistep Steel Pipe Grouting Method in Shallow Depth Railway Tunnels in Considering Safety and Constructability (저토피 철도터널구간의 안전 및 시공성을 고려한 개선된 강관다단 그라우팅 공법 적용성 분석)

  • Kim, Nakseok;Choi, Gisung;Kim, Seokhyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.97-103
    • /
    • 2020
  • The newly improved multistep steel pipe grouting method was applied to an existing steel pipe-reinforced grouting method. It was applied in order to prevent a damage caused by ground failure from excessive grouting pressure in a tunnel construction. The tunnel goes under a highway and a ramp connected to a rest area on OO highway with 11.3~12.1 m depth cover and is a part of roadbed facility construction section ordered by OO public corporation. The improved grouting method provides pre-construction work condition assessment technique through new water injection limit test and grouting effect assessment technique by grouting type assessment. It also includes assessments on interval of joints, appropriate grouting pressure, and optimal operation time to be applied to current operations. Application of the grouting method allowed the smooth road management in shallow-depth grouting construction area located upper part of tunnel excavation. Moreover, the possibility of the application of the method not only to shallow-depth grouting construction but also to various steel pipe-reinforced grouting constructions was confirmed.

The Development of Corrosion Standard System of Water and Wastewater in Soil Environment (상·하수도 배관재의 토양환경에서의 부식표준시스템 개발)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

Effects of ponding depth treatment on evapotranspiration in paddy fields (담수심 처리가 논의 증발산량에 미치는 영향)

  • Sohn, Seung-Ho;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study was to investigate the effects of ponding depth treatment on evapotranspiration in paddy fields. Three poding depth treatments, very sallow, shallow, and deep were used. The experimental plots were three $80m{\times}8m$ rectangular plots. Daily values of rainfall amount, ponding depth, irrigation water, drainage water, evapotranspiration, and infiltration were measured in the field. The ponding depth was continuously observed by observed nstaff during the growing season. The ET was measured by 1m diameter PVC lysimeters. Irrigation water volume was measured by 75 mm pipe flow-meters and the drainage water volume by 75 mm pipe flow-meters and a recording parshall flume. The results showed that irrigation water depths were 688.9 mm, 513.6 mm, and 624.4 mm in 2001, and 356.9 mm, 428.6 mm, and 513.2 mm in 2002 in very shallow, shallow, and deep ponding, respectively. The evapotranspiration were 465.0 mm, 484.1 mm, and 415.1 mm in 2001 and 461.3 mm, 476.3 mm, and 470.6 mm in 2002 in very shallow, shallow, and deep ponding, respectively.

  • PDF