• 제목/요약/키워드: Pipe Structures

검색결과 459건 처리시간 0.021초

용접부 3차원 반타원 계면균열선단에서의 응력장 (3D Semi-elliptical Interfacial Crack Front Stress Fields in Welded Joints)

  • 최호승;이형일;송원근
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.649-659
    • /
    • 2002
  • 다양한 평면변형률 시편들의 균열선단 탄·소성 응력상태들에 대한 경우, 여러 연구들을 동해, J-T접근방법의 유효 타당성이 충분히 검증되어졌다. 그러나 J-T 두 변수에 의한 균열선단 응력장 예측의 타당성을 보편화시키기 위해서는, 평면변형률 시편들과 같이 이상화된 구조가 아닌 실제적인 3차원 구조형상에 대한 연구가 필요하다. 이를 배경으로 본 연구에서는 평판과 직관에 대해 완전 3차원 유한요소해석을 수행하여 얻어진 응력장과 계산된 J-T두 변수로 예측되는 응력장을 비교함으로써, J-T 접근방법의 유효성 내지 한계성을 규명하였다.

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

심해저 파이프라인과 굽힘 제한 장치의 다중물체 접촉 해석을 통한 구조 최적설계 (Multi-Body Contact Analysis and Structural Design Optimization of Bend Restrictors for Subsea Pipelines)

  • 노정민;하윤도
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.289-296
    • /
    • 2018
  • The offshore subsea platforms are connected to subsea pipelines to transport gas/oil from wells. The pipe is a multilayered structure of polymer and steel for compensating both flexibility and strength. The pipe also requires reinforcement structures to endure the extreme environmental conditions. A vertebrae structure of bend restrictors is one of the reinforcement structures installed to protect the subsea pipe from excessive bending deformations. In this study, structural behaviors of the subsea pipeline with bend restrictors are investigated by the multi-body contact analysis in Abaqus 6.14-2. Contact forces of each bend restrictor extracted from the multi-body contact analysis can be boundary conditions for topology design optimization in Altair Hyperworks 13.0 Hypermesh-Optistruct. Multiple design constraints are considered to obtain a manufacturable design with efficient material usage. Through the multi-body contact analysis with optimized bend restrictors, it is confirmed that the bending performance of the optimized design is enhanced.

Laser based impedance measurement for pipe corrosion and bolt-loosening detection

  • Yang, Jinyeol;Liu, Peipei;Yang, Suyoung;Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.41-55
    • /
    • 2015
  • This study proposes a laser based impedance measurement system and impedance based pipe corrosion and bolt-loosening monitoring techniques under temperature variations. For impedance measurement, the laser based impedance measurement system is optimized and adopted in this paper. First, a modulated laser beam is radiated to a photodiode, converting the laser beam into an electric signal. Then, the electric signal is applied to a MFC transducer attached on a target structure for ultrasonic excitation. The corresponding impedance signals are measured, re-converted into a laser beam, and radiated back to the other photodiode located in a data interrogator. The transmitted impedance signals are treated with an outlier analysis using generalized extreme value (GEV) statistics to reliably signal off structural damage. Validation of the proposed technique is carried out to detect corrosion and bolt-loosening in lab-scale carbon steel elbow pipes under varying temperatures. It has been demonstrated that the proposed technique has a potential to be used for structural health monitoring (SHM) of pipe structures.

지하 교각 기초의 온도균열 제어를 위한 수화열 해석 연구 (A Study of the Thermal Analysis for the Crack Control of Underground Pier Footing)

  • 박원태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권2호
    • /
    • pp.91-101
    • /
    • 2006
  • 최근들어 매스콘크리트 구조물의 시공이 증가 추세에 있다. 이러한 매스콘크리트는 수화열상승으로 온도균열이 발생할 수 있다. 온도균열을 방지하기 위하여 일반적으로 프리 쿨링, 파이프 쿨링 및 타설높이를 제한하는 방법이 사용된다. 본 연구에서는 교각 기초의 온도균열을 방지하기 위하여 열응력 검토를 실시하였으며, 이때 기초는 $12m{\times}14m$의 면적과 3m 높이를 가지는 것을 모델로 하였다. 타설 높이를 제한하는 방법과 파이프 쿨링에 의한 해석결과를 비교 검토 하였다. 온도응력를 해석한 결과 지반위에 타설한 기초매트는 타설높이를 제한하는 방법과 파이프쿨링 방법에 의해 균열을 제어할 수 있다.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

시설원예용 플라스틱 하우스의 태풍피해에 관한 연구 (A Study on the Typhoon Disaster of Greenhouse)

  • 윤용철;서원명;윤충섭
    • 생물환경조절학회지
    • /
    • 제4권2호
    • /
    • pp.167-174
    • /
    • 1995
  • This study was carried out to find a way of improving the windproof capability of greenhouse foundations. Generally, greenhouses are often collapsed due to the strong winds, because they are very light weight structures. In such a critical situations, the foundations are very often subjected to uplift and vibration at the same time. This paper describes both the wind disaster of greenhouses by the typhoon FAEY and the uplift resistance of greenhouse foundations. Followings are the results obtained from this study ; Judging from the view point of year round cultural aspects, it is recommended that some measures be taken for the preventions of greenhouse film ruptures because greenhouse structural damages are found to be directly associated with the local rupture of cover film. In the case of surveyed area, movable pipe-houses or pipe-houses of 1-2W type were found to be completely destroyed when the maximum instantaneous wind velocity was over 30m/sec or so. In the case of movable pipe-houses, the uplift resistance of greenhouse was expected to increase with the increase of pipe diameter and/or the embedment pipe length. But at present situations there is a limitation in raising the uplift resistance of movable pipe-house, because pipe diameters as well as pipe lengths customarily selected by farmers are quite a much limited.

  • PDF

천공장치를 이용한 배수설비 연결관 시공 기술에 관한 연구 (A Study for Drainage Pipe Construction Method using a Boring Machine)

  • 장재구;강선홍;김동은;정태호
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.869-875
    • /
    • 2011
  • Ministry of Environment has been promoting BTL business of the sewer rehabilitation which continues from 2005 up to now. Sewer rehabilitation is classified into three parts : wastewater pipe rehabilitation, rainwater pipe rehabilitation and drainage equipment rehabilitation. Drainage equipment rehabilitation is that drainage pipe connects wastewater pipe directly without water-purifier. In the drainage equipment construction, it is inevitable to have the damage of ground structures(wall, gate and U drain, etc) when an open excavation method is used. Therefore it is necessary to develop non-excavation method to connect drainage pipe and wastewater pipe like jacking method to avoid the damage of ground structure. This paper has conducted an analysis of the non-excavation method using a boring machine attached to backhoe, which is issued the verification certificate of environmental technology according to the Development of and Support for Environmental Technology Act, article.7. The index set in this analysis was sectionalized to the condition of construction, the grade of drainage pipe, the size of excavated hole, the amount of waste cement concrete and asphalt concrete and the benefit effect compared to open excavation method.

현장 열성능 평가시험을 통한 강관 에너지파일의 적용성 평가 (Evaluation of Applicability of Steel-pipe Energy Piles Through Thermal Performance Test (TPT))

  • 이석재;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.1-9
    • /
    • 2022
  • A novel steel-pipe energy pile is introduced, in which the deformed rebars for main reinforcing are replaced with steel pipes in a large diameter cast-in-place energy pile. Here, the steel pipes act as not only reinforcements but also heat exchangers by circulating the working fluid through the hollow hole in the steel pipes. Under this concept, the steel-pipe energy pile can serve a role of supporting main structures and exchanging heat with surrounding mediums without installing additional heat exchange pipes. In this study, the steel-pipe energy pile was constructed in a test bed considering the material properties of steel pipes and the subsoil investigation. Then, the thermal performance test (TPT) in cooling condition was conducted in the constructed energy pile to investigate thermal performance. In addition, the thermal performance of the steel-pipe energy pile was compared with that of the conventional large diameter cast-in-place energy pile to evaluate its applicability. As a result, the steel-pipe energy pile showed 11% higher thermal performance than the conventional energy pile along with much simpler construction processes.

크랙을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack)

  • 안태수;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF