• Title/Summary/Keyword: Pipe Replacement

Search Result 79, Processing Time 0.026 seconds

Estimation of Deterioration Assessment for Weighting Factors in Pipes of Water Supply Systems Using Analytic Hierarchy Process (계층적분석과정을 이용한 상수관로의 노후도 평가를 위한 항목별 가중치 산정)

  • Kim, Eung-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • The purpose of this study is to estimate deterioration assessment for weighting factors in pipe network for which each local selfgovernment takes rehabilitation and replacement work at present time. Deterioic hierarchy process(AHP), calculates the weighting factors. The appropriate marks matrix of sixteen deterioration factors are made for the precise decision standard of pipe condition through the result of this analysis. The marks matrix of sixteen deterioration factors can solve the complicated decision making problems of pipe rehabilitation workration factors in the pipe network might be influenced by local factors, such as province, location, or land use, in water supply systems. In this study, the sixteen deterioration factors are determined suitable for domestic situation based on the pipe deterioration factor data inside and outside of the country. Also, we select persons in charge of calculating the detail weighting factors and do survey about important level of each deterioration factors. Delphi method, a question survey method applying the analyts.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

A fundamental study on the minimize wear of slurry shield TBM sludge bend pipe (이수식 쉴드 TBM 배니곡관 마모 최소화를 위한 기초 연구)

  • Soo-Jin Lee;Hyeon-Do Kim;Yong-Woo Kim;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.243-254
    • /
    • 2024
  • Currently, due to industrial development in domestic regions, buildings are saturated not only in major city centers but also in surrounding urban areas. Accordingly, people's attention has focused on underground spaces, and tunnels are being widely used, especially in urban development. Research on tunnels and tunnel excavation methods is actively underway. However, there is a lack of research on the wear and tear problems of sludge discharge pipes when using a slurry shield TBM. Therefore, in this paper, the L-shaped bend pipe used in the existing sludge discharge pipe was transformed into a T-shaped bend pipe to move sludge. As a result, it was confirmed that compared to the L-shaped bend pipe, the impact of the T-shaped bend pipe on the bend pipe when discharging sludge was reduced. Based on these results, it is expected that wear of the sludge discharge pipe can be minimized by using a T-shaped bend pipe when using slurry shield TBM equipment. This is expected to ultimately lead to economic benefits, such as reducing costs due to replacement of curved pipes or additional welding during tunnel construction.

Characteristics of Bond Strength with Measuring Methods of Concrete (시험방법에 따른 신ㆍ구 콘크리트의 부착강도 특성)

  • 장흥균;김성환;홍창우;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.597-600
    • /
    • 2003
  • The development and maintenance of a sound bond are an essential requirements of concrete repair and replacement. The bond property of a bonded overlay to its substrate concrete during the lifetime is one of the most important performance requirements which should be quantified. A standard or a verified bond strength measurement method is required at field for screening, selecting materials and quality control for overlay or repair materials. This study compares the nipple pipe direct tensile test, flexural adhesion test, and core pull-off test with their test results. Substantial differences in the failure stresses of three test methods were attributed to their different geometries and loading conditions. From these comparison and investigation, core pull-off test was relatively good because the coefficient of variation values were about 2%. It would be suitable for use in-situ because of its simplicity and accuracy.

  • PDF

A study on the Aluminium Beam Methods for Building a Stone Finished Envelope (석재 외피 시공을 위한 알루미늄 빔 지지공법 연구)

  • Kim, Jang-Ook;Lee, Young-Lae;Hong, Seong-Wook;Doh, Sun-Boong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.235-242
    • /
    • 2012
  • In recently constructed building, It has become fashionable again that the heavy external skin system such as a Stone Finished Envelope. There are Squared Steel Pipe Methods, C-Shaped Steel Pipe Methods, and Aluminum Beam Methods in the structure of a heavy external skin system. The Aluminum Beam Methods is often misunderstood as a Plane Truss Structure, but this method is not appropriate to be called to a truss structure but a beam methods. The Aluminum Beam Methods is the most Eco-friendly methods in terms of Quality assurance, Efficiency, Safety, Construction period, Durability, and Recyclability. And this Methods is also very appropriate in considering the point of Energy conservation, Waste reduction, Long-life architecture, Replacement parts, Environmental protection, Public efficiency, and Building demolition.

  • PDF

Feasibility Study of Multi-regional Transmission Main Stabilization for Sustainable Water Supply (수돗물 공급 안정화를 위한 광역상수도 관로 안정화 타당성 연구)

  • Lee, Jae Bum;Yi, Choong Sung;Jung, Kwan Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.395-404
    • /
    • 2013
  • The risk of pipe-bursting in multi-regional transmission mains consisting of 89 % of singled pipeline is so high that pipeline stabilization project is required such as renewal and replacement, pipe paralleling, emergency ties. Pipeline stabilization projects could be postponed at the step of initial decision-making because effect of this project is intangible benefit like activation of economic, improvement of welfare related to water. This study is to suggest quantified economical feasibility model for intangible benefit presumption to solve above problem. Cost reduction of emergency water supply, leakage, burst restore and energy efficiency improvement was altered and applied. As a result of economic analysis taking into account estimated benefit and cost under discount rate 5.5 %, service life 40 years, sufficient economic feasibility analyzed with B/C 2.45, NPV 317,700 million won, IRR 9.09 %.

Deterioration Prediction Model of Water Pipes Using Fuzzy Techniques (퍼지기법을 이용한 상수관로의 노후도예측 모델 연구)

  • Choi, Taeho;Choi, Min-ah;Lee, Hyundong;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • Pipe Deterioration Prediction (PDP) and Pipe Failure Risk Prediction (PFRP) models were developed in an attempt to predict the deterioration and failure risk in water mains using fuzzy technique and the markov process. These two models were used to determine the priority in repair and replacement, by predicting the deterioration degree, deterioration rate, failure possibility and remaining life in a study sample comprising 32 water mains. From an analysis approach based on conservative risk with a medium policy risk, the remaining life for 30 of the 32 water mains was less than 5 years for 2 mains (7%), 5-10 years for 8 (27%), 10-15 years for 7 (23%), 15-20 years for 5 (17%), 20-25 years for 5 (17%), and 25 years or more for 2 (7%).

An Experimental Study on Evaluation of Repair Mortars with CAC (Calcium Aluminate Cement) for Sewer Pipe (하수관거 보수용 CAC 모르타르 성능평가에 대한 실험적 연구)

  • Chung, Jee-Seung;Kang, Weon-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.68-75
    • /
    • 2012
  • The biogenic corrosion of mortars adopted in sewage repair by sulfuric acid-producing bacteria was considered in this paper. Calcium aluminate cement (CAC) was known to resist microbiologically-induced corrosion significantly better than portland and blended portland cement.In this study, CAC as well portland cement mortars were tested as main binder to evaluate the corrosion resistance by the chemical immersion test. Replacement ratios of CAC were changed as 0, 20, 40, 50, 60% of OPC binder and 0, 2, 4, 6% of EVA(Ethylene Vinyl Acetate) were also adopted to increase properties of CAC repair mortars in sewage application. Setting time, compressive strength, acid resistance and adhesive strength were measured for various experiments. As a results of the experiments, the proper formulation of repair mortars was found at 40% of CAC and 4% of EVA. Finally, the CAC mortars adopted in field sewer pipe and were demonstrated to superior in adhesion and workability.

Experience in Visual Testing of the Main Feed Water Piping Weld for Hanul Unit 3 (한울 3호기 주급수 배관 용접부 육안검사 경험)

  • Yoon, Byung Sik;Moon, Gyoon Young;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.74-78
    • /
    • 2015
  • Nuclear power plant steam generator that is one of the main component has several thousands of thin tubes. And the steam generator tube is subject to damage because of the severe operation conditions such as the high temperature and pressure. Therefore periodic inspections are conducted to ensure the integrity of steam generator component. Hanul unit 3 also has been inspected in accordance with in-service inspection program and is scheduled to be replaced for exceeding the plugging rate which was recommended by manufacturer. During the steam generator replacement activity, we found several clustered porosity on inner surface of main feed water pipe. Additionally crack-like indications were found at weld interface between base material and weld of main feed water pipe. This paper describes the field experience and visual testing results for inner surface of main feed water pipes. The destructive test result had shown that these indications were porosities which were caused by manufacturing process not by operation service.

Development of Optimal Rehabilitation Model for Water Distribution System Based on Prediction of Pipe Deterioration (I) - Theory and Development of Model - (상수관로의 노후도 예측에 근거한 최적 개량 모형의 개발 (I) - 이론 및 모형개발 -)

  • Kim, Eung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.45-59
    • /
    • 2003
  • The method in this study, which is more efficiency than the existing method, propose the optimal rehabilitation model based on the deterioration prediction of the laying pipe by using the deterioration survey method of the water distribution system. The deterioration prediction model divides the deterioration degree of each pipe into 5 degree by using the probabilistic neural network. Also, the optimal residual durability is estimated by the calculated deterioration degree in each pipe and pipe diameter. The optimal rehabilitation model by integer programming base on the shortest path can calculate a time and cost of maintenance, rehabilitation, and replacement. Also, the model is divided into budget constraint and no budget constraint. Consequently, the model proposed by the study can be utilized as the quantitative method for the management of the water distribution system.