• Title/Summary/Keyword: Pin Method

Search Result 682, Processing Time 0.033 seconds

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis

  • Mala, Petra;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2431-2441
    • /
    • 2020
  • Currently, the pin-by-pin homogenized solvers are a very active research field as they can, unlike the nodal codes, directly predict the local power, while requiring significantly less computational resources than the heterogeneous transport codes. This paper presents a recently developed pin-by-pin diffusion/SP3 solver Tortin, its spatial discretization method and the reflector treatment. Regarding the spatial discretization, it was observed that the finite difference method applied on pin-cell size mesh does not properly capture the big flux change between MOX and uranium fuel, while the nodal expansion method is more accurate but too slow. If the finite difference method is used with a finer mesh in the outer two pin rows of the fuel assembly, it increases the required computation time by only 50%, but decreases the pin power errors below 1% with respect to lattice code reference solutions. The paper further describes the coupling of Tortin with a microscopic depletion solver. Several verification tests show that the SP3 pin-by-pin solver can reproduce the heterogeneous transport solvers results with very good accuracy, even for fuel cycle depletion of very heterogeneous core employing MOX fuel or inserted control rods, while being two orders of magnitude faster.

Indirect PIN Entry Method for Mobile Banking Using Relative Location Information of Secret Code (비밀코드의 상대적 위치정보를 이용한 모바일 뱅킹용 간접 PIN 입력 기법)

  • Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.738-746
    • /
    • 2020
  • In this paper, we propose an indirect PIN entry method that provides enhanced security against smudge, recording, and thermal attacks. Conventional mobile PIN entry methods use on-screen numeric keypad for both use of display and entry. Thus These methods are vulnerable to aforementioned attacks. In our method, passcode is same as that of the conventional PIN entry methods, and that is user-friendly way for mobile device users. Therefore, our method does not reduce user convenience which is one of the advantages of the conventional methods. In addition, our method is not a method of directly touching the on-screen numeric keypad for entering passcode like the conventional PIN methods. Unlike the conventional methods, our method uses an indirect passcode entry method that applied a passcode indicating key. According to the performance comparison result, proposed method provides user convenience similar to the conventional methods, and also provides a higher level of security and safety against recording, smudge, and thermal attacks than the conventional methods.

User authentication using touch positions in a touch-screen interface (터치스크린을 이용한 터치 위치기반 사용자 인증)

  • Kim, Jin-Bok;Lee, Mun-Kyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.135-141
    • /
    • 2011
  • Recent advances in mobile devices and development of various mobile applications dealing with private information of users made user authentication in mobile devices a very important issue. This paper presents a new user authentication method based on touch screen interfaces. This method uses for authentication the PIN digits as well as the exact locations the user touches to input these digits. Our method is fully compatible with the regular PIN entry method which uses numeric keypads, and it provides better usability than the behavioral biometric schemes because its PIN registration process is much simpler. According to our experiments, our method guarantees EERs of 12.8%, 8.3%, and 9.3% for 4-digit PINs, 6-digit PINs, and 11-digit cell phone numbers, respectively, under the extremely conservative assumption that all users have the same PIN digits and cell phone numbers. Thus we can guarantee much higher performance in identification functionality by applying this result to a more practical situation where every user uses distinct PIN and sell phone number. Finally, our method is far more secure than the regular PIN entry method, which is verified by our experiments where attackers are required to recover a PIN after observing the PIN entry processes of the regular PIN and our method under the same level of security parameters.

One-node and two-node hybrid coarse-mesh finite difference algorithm for efficient pin-by-pin core calculation

  • Song, Seongho;Yu, Hwanyeal;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.327-339
    • /
    • 2018
  • This article presents a new global-local hybrid coarse-mesh finite difference (HCMFD) method for efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)-based two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems with boundary conditions of incoming partial current, and they can be solved in parallel. The global problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method. We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD algorithm was also parallelized with the OpenMP parallel interface, and its numerical performances were evaluated for several benchmarks.

A Study of the Improvement Method of I-pin Mass Illegal Issue Accident (아이핀 대량 부정발급 사고에 대한 개선방법 연구)

  • Lee, Younggyo;Ahn, Jeonghee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.2
    • /
    • pp.11-22
    • /
    • 2015
  • The almost of Web page has been gathered the personal information(Korean resident registration number, name, cell-phone number, home telephone number, E-mail address, home address, etc.) using the membership and log-in. The all most user of Web page are concerned for gathering of the personal information. I-pin is the alternative means of resident registration number and has been used during the last ten-year period in the internet. The accident of I-pin mass illegal issue was happened by hacker at February, 2015. In this paper, we analysis the problems of I-pin system about I-pin mass illegal issue accident and propose a improvement method of it. First, I-pin issue must be processed by the off-line of face certification in spite of user's inconvenience. Second, I-pin use must be made up through second certification of password or OTP. The third, the notification of I-pin use must be sent to the user by the text messaging service of cell-phone or the E-mail. The forth, I-pin must be used an alternative means of Korean resident registration number in Internet. The methods can reduce the problems of I-pin system.

Voltage-Controlled PH Diode Attenuator and Temperature Compensation Circuit for Ku-band Satellite Payload (Ku-대역 위성중계기용 전압제어형 PIN 다이오드 감쇄기 및 온도보상회로 설계)

  • 장병준;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.484-491
    • /
    • 2002
  • This paper presents the results of a study of voltage-controlled PIN diode attenuators for Ku-band satellite payload and suggests the temperature-compensation method of these attenuators. The PIN diode attenuators are designed using thin-film hybrid techniques. The load resistance for maximum linear characteristics is determined by simulation and measurements. In the case of APD0805, load resistance of 150 $\Omega$ gives attenuator up to 10 dB linear attenuation range per a PIN diode. Also, measurements over temperature of these PIN diode attenuators were performed. From these measurements, designed PIN diode attenuators shows the severe temperature dependency due to forward voltage variation. A temperature compensation method using thermistor is now suggested to compensate the temperature variation of these PIN diode attenuators. This circuit shows good linear characteristics over wide temperature range

Secure PIN Authentication Technique in Door-Lock Method to Prevent Illegal Intrusion into Private Areas (사적 영역에 불법 침입 방지를 위한 도어락 방식의 안전한 PIN 인증 기법)

  • Hyung-Jin Mun
    • Journal of Practical Engineering Education
    • /
    • v.16 no.3_spc
    • /
    • pp.327-332
    • /
    • 2024
  • The spread of smart phones provides users with a variety of services, making their lives more convenient. In particular, financial transactions can be easily made online after user authentication using a smart phone. Users easily access the service by authenticating using a PIN, but this makes them vulnerable to social engineering attacks such as spying or recording. We aim to increase security against social engineering attacks by applying the authentication method including imaginary numbers when entering a password at the door lock to smart phones. Door locks perform PIN authentication within the terminal, but in smart phones, PIN authentication is handled by the server, so there is a problem in transmitting PIN information safely. Through the proposed technique, multiple PINs containing imaginary numbers are generated and transmitted as processed values such as hash values, thereby ensuring the stability of transmission and enabling safe user authentication through a technique that allows the PIN to be entered without exposure.

A Study of Pin-to-pin DC Parametric Test Modeling of VLSI Devices (VLSI 소자의 핀간 DC 파라메터 테스트 모델링 연구)

  • 박용수;송한정;황금주;김철호;유흥균
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.891-894
    • /
    • 1999
  • According to increasing the integration of the device, there are important consideration about the improvement of the reliability in the product. To improve the reliability of the device, the test parameters and test time are increased. There are no pin-to-pin short test and pin-to-pin leakage test in the present test items to analysis the characteristics and reliability of the device. The purpose of the paper is to model the pin-to-pin phenomenon and propose to modify the test method present and to test the new pin-to-pin DC parameters. These modified and additive test items are applied to product test and confirmed to improve the reliability of product test.

  • PDF

REMOVAL TORQUE OF BICORTICALLY STABILIZED RBM(RESORBABLE BLAST MEDIA) PIN IMPLANTS IN RABBIT TIBIA

  • Kim, Kwon-Sik;Suh, Kyu-Won;Lee, Richard Sung-Bok;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.722-733
    • /
    • 2006
  • Statement of problem. The use of small diameter implants having less than 3 mm in diameter were restricted because of lack of bonding strength to bone. Purpose. The purpose of this study was to observe how much resorbable blast media pin implants increase the binding force to the bone compared to machined transitional pin implants by measuring removal torque, and whether they can be used as final implants for replacement of small diameter teeth. Material and method. Fifteen rabbits were used in this study. Two kinds of implants (resorbable blast media pin implants and machined transitional pin implants) were inserted in each tibia bicortically. After healing time of 2, 4 and 8 weeks, the removal torque values were recorded and the rabbits were sacrificed for histological analysis. Linear finite element method analyses were conducted to compare bicortical fixation with monocortical fixation. Result and conclusion. Within the limitation of this in vivo study, the following conclusions were drawn: 1) The removal torque value of RBM pin implants showed statistically significant increase compared to machined pin implants at 2, 4, and 8 weeks respectively (p<0.05). 2) The removal torque value of RBM pin implants at 2, 4, and 8 weeks was increased statistically significantly with time (p<0.05). 3) Bicortical fixation showed better stress distribution compared with monocortical fixation in a linear finite element method analysis. 4) RBM pin implants are not recommended as transitional implants because they showed a lot of bone fracture in histologic specimens.