• Title/Summary/Keyword: Pile tip

Search Result 116, Processing Time 0.03 seconds

Analysis on inclined or rounded tip piles using 3D printing technology and FE analysis

  • Jaehong Kim;Junyoung Ko;Dohyun Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.91-99
    • /
    • 2023
  • To test the effect of various pile tip shape series of model scale loading tests were carried out on test piles with special pile tips. Special pile tips were made using the 3D printer and were attached to the bottom end of the test pile for loading tests. The pile tips were made to have 30°, 45°, 60° inclined tips, as well as a rounded tip. The main objective of the test was to observe the effect of various pile tip shapes on settlement and penetrability of the pile. Moreover, a numerical model simulating the pile loading test carried out in this study was established and verified based on the loading test results. From this, the stress concentration around the pile tip was investigated. This will allow us to analyze the decrease of stress concentration around the pile tip which is the main cause of the pile tip damage during pile installation. However, modifying the pile tip shape will eventually increase the settlement of the pile. By estimating the degree of increase in pile settlement, the viability and the efficiency of the pile shape modification was judged. In addition, case studies on the effect of different pile tip shape and ground conditions on pile settlement and stress dispersion was conducted.

Modeling of pile end resistance considering the area of influence around the pile tip

  • Hyodo, Junichi;Shiozaki, Yoshio;Tamari, Yukio;Ozutsumi, Osamu;Ichii, Koji
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.287-294
    • /
    • 2019
  • The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

Uplift capacity of single vertical belled pile embedded at shallow depth

  • Jung-goo Kang;Young-sang Kim;Gyeongo Kang
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.165-179
    • /
    • 2023
  • This study investigates the uplift capacity of a single vertical belled pile buried at shallow depth in dry sand. The laboratory model experiments are conducted with different pile-tip angles and relative densities. In addition, image and FEM analyses are performed to observe the failure surface of the belled pile for different pile-tip angles and relative densities. Accordingly, the uplift capacity and failure angle in the failure surface of the belled pile were found to depend on the belled pile-tip angle and relative density. A predictive model for the uplift capacity of the belled pile was proposed considering the relative density and belled pile-tip angle based on a previous limit equilibrium equation. To validate the applicability of the proposed model, the values calculated using the proposed and previous models were compared to those obtained through a laboratory model experiment. The proposed model had the best agreement with the laboratory model experiment.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

Investigation for Possible Practical Applicability of Open-Ended PHC Pile (개단 고강도 콘크리트(PHC) 말뚝의 실용성 검토)

  • Paik, Kyu Ho;Lee, Seung Rae;Park, Hyoun Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.965-975
    • /
    • 1994
  • Opening the tip of a PHC pile, under a constant driving energy, can result in an increment of penetration depth due to the decrement of driving resistance. Therefore, the bearing capacity of an open-ended PHC pile may become larger than that of a closed-ended PHC pile by virtue of the increased embedded length. However, two main problems can be caused by opening the end of PHC pile. First problem is the variation of bearing capacity by opening the pile tip, and the second one is whether the tip of an open-ended PHC pile will be failured by a high pressure developed by the soil plug. In this study, model pile tests in calibration chamber were performed to investigate the practicability of open-ended PHC pile in view of both the pile bearing capacity and the possible failure of the pile tip. According to the test results, the total bearing capacity of open-ended piles approaches the total bearing capacity of closed-ended piles with the increase of the penetration depth. The failure of pile tip could be occurred in the region of 0.8~1.1 times as the inside diameter from the pile tip.

  • PDF

Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil

  • Zou, Jin-Feng;Yang, Tao;Deng, Dong-ping
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • The long-term settlement characteristics for the cast-in-place bored pile in the deep-thick soft soil are investigated by post-grouting field tests. Six cast-in-place bored engineering piles and three cast-in-place bored test piles are installed to study the long-term settlement characteristics. Three post-grouting methods (i.e., post-tip-grouting, post-side-grouting, and tip and side post-grouting) are designed and carried out by field tests. Results of the local test show that decreased settlements for the post-side-grouted pile, the post-tip-grouted pile and the tip and side post-grouted pile are 22.2%~25.8%, 30.10%~35.98% and 32.40%~35.50%, respectively, compared with non-grouted piles. The side friction resistance for non-grouted piles, post-side-grouted pile, post-tip-grouted pile and the tip and side post-grouted pile undertakes 89.6~91.3%, 94.6%, 92.4%~93.0%, 95.7% of the total loading, respectively. At last, the parameters back analysis method and numerical calculation are adopted to predict the long-term settlement characteristics of the cast-in-place bored pile in the deep-thick soft soil. Determined Bulk modulus (K) and a creep parameter (Ks) are used for the back analysis of the long-term settlement of the post-grouted pile. The settlement difference between the back analysis and the measurement data is about 1.11%-7.41%. Long-term settlement of the post-grouted piles are predicted by the back analysis method, and the predicted results show that the settlement of the post-grouted pile are less than 6 mm and will be stable in 30 days.

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF