DOI QR코드

DOI QR Code

Uplift capacity of single vertical belled pile embedded at shallow depth

  • Jung-goo Kang (Department of Civil Engineering, Gwangju University) ;
  • Young-sang Kim (Department of Civil Engineering, Chonnam National University) ;
  • Gyeongo Kang (Department of Civil Engineering, Gwangju University)
  • Received : 2022.11.14
  • Accepted : 2023.08.30
  • Published : 2023.10.25

Abstract

This study investigates the uplift capacity of a single vertical belled pile buried at shallow depth in dry sand. The laboratory model experiments are conducted with different pile-tip angles and relative densities. In addition, image and FEM analyses are performed to observe the failure surface of the belled pile for different pile-tip angles and relative densities. Accordingly, the uplift capacity and failure angle in the failure surface of the belled pile were found to depend on the belled pile-tip angle and relative density. A predictive model for the uplift capacity of the belled pile was proposed considering the relative density and belled pile-tip angle based on a previous limit equilibrium equation. To validate the applicability of the proposed model, the values calculated using the proposed and previous models were compared to those obtained through a laboratory model experiment. The proposed model had the best agreement with the laboratory model experiment.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C2004070) and the research funds from Gwangju University in 2023.

References

  1. Balla, A. (1961), "The resistance to breaking-out of mushroom foundations for pylons", Proceedings of the 5th. Int. Conf. on SMFE, Paris, France, July.
  2. Emirler, B., Tolun, M. and Laman, M. (2016), "Experimental investigation of the uplift capacity of group anchor plates embedded in sand", Geomech. Eng., 11(5), 691-711. https://doi.org/10.12989/gae.2016.11.5.691.
  3. Ghaly, A., Hanna, A. and Hanna, M. (1991), "Installation torque of screw anchors in dry sand", Soils Found., 31(2), 77-92. https://doi.org/10.3208/sandf1972.31.277.
  4. Chatani, F., Suzuki, N., Nishimura, K. and Wada, Y. (2008), "Static axial reciprocal and tensile load tests of single cast-in-place concrete nodular piles, Part 5", In Annual Meeting of Architectural Istitute of Japan, Japan.
  5. Chattopadhyay, B.C. and Pise, P.J. (1986), "Uplift capacity of piles in sand", J. Geotech. Eng., 112(9), 888-904. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:9(888).
  6. Clemence, S.P. and Veesaert, C.J. (1977), "Dynamic Pullout Resistance of Anchors in Sand", Proceedings of the Int Symp on Soil Struct Interaction, Roorkee, India, January.
  7. Dash, B.K. and Pise, P.J. (2003), "Effect of compressive load on uplift capacity of model piles", J. Geotech. Geoenviron. Eng., 129(11), 987-992. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(987).
  8. Deb, T. and Pal, S.K. (2019), "Study on the uplift behaviour and failure pattern of single belled anchor with 3D and 2D models in cohesionless soil bed", Iran. J. Sci. Technol. Trans. Civ. Eng., 43(3), 327-343. https://doi.org/10.1007/s40996-018-0144-x.
  9. Deb, T. and Pal, S.K. (2019), "Comparison of uplift capacity and nonlinear failure surfaces of single-belled anchor in homogeneous and layered sand deposits", Adv. Civ. Eng., 2019, https://doi.org/10.1155/2019/4672615.
  10. Dickin, E.A. and Leung, C.F. (1990), "Performance of piles with enlarged bases subject to uplift forces", Can. Geotech. J., 27(5), 546-556. https://doi.org/10.1139/t90-070.
  11. Dickin, E.A. and Leung, C.F. (1992), "The influence of foundation geometry on the uplift behaviour of piles with enlarged bases", Can. Geotech. J., 29(3), 498-505. https://doi.org/10.1139/t92-054.
  12. Downs, D.I. and Chieurzzi, R. (1966), "Transmission tower foundations", J. Power Div., 92(2), 91-114. https://doi.org/10.1061/JPWEAM.0000518.
  13. Honda, T., Hirai, Y. and Sato, E. (2011), "Uplift capacity of belled and multi-belled piles in dense sand", Soils Found, 51(3), 483-496. https://doi.org/10.3208/sandf.51.483.
  14. Hong, W.P. and Chim, N. (2015), "Prediction of uplift capacity of a micropile embedded in soil", KSCE J. Civ. Eng., 19(1), 116-126. https://doi.org/10.1007/s12205-013-0357-2.
  15. Keskin, M.S. (2015), "Model studies of uplift capacity behavior of square plate anchors in geogrid-reinforced sand", Geomech. Eng., 8(4), 595-613. https://doi.org/10.12989/gae.2015.8.4.595.
  16. Khadilkar, B.S., Shinkre, P.R. and Karandikar, A.V. (1971), "Laboratory investigations of stress measurements in soils", Indian Geotech. J., 53.
  17. Kishida, H. (1963), "Stress distribution by model piles in sand", Soils Found., 4(1), 1-23. https://doi.org/10.3208/sandf1960.4.1.
  18. Ilamparuthi, K. and Muthukrishnaiah, K. (1999), "Anchors in sand bed: delineation of rupture surface", Ocean Eng., 26(12), 1249-1273. https://doi.org/10.1016/S0029-8018(98)00034-1.
  19. Ilamparuthi, K., Dickin, E.A. and Muthukrisnaiah, K. (2002), "Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand", Can. Geotech. J., 39(3), 648-664. https://doi.org/10.1139/t02-005.
  20. JGS 0560 (2020), Method for consolidated constant volume direct box shear test on soils, Japanese Geotechnical Society Standard, Japan.
  21. JIS. A. 1224 (2009), Test method for minimum and maximum densities of sands, Japanese Industrial Standard, Japan.
  22. Jinyuan Liu, P.E., Eng, P., Liu, M. and Zhu, Z. (2012), "Sand deformation around an uplift plate anchor", J. Geotech. Geoenviron. Eng., 138(6), 728-737. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000633.
  23. Levacher, D.R. and Sieffert, J.G. (1984), "Tests on model tension piles", J. Geotech. Eng., 110(12), 1735-1748. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:12(1735).
  24. Lu, X.L., Qian, Z.Z. and Yang, W.Z. (2017), "Axial Uplift Behavior of Belled Piers in Sloping Ground", Geotech. Test. J., 40(4), 505-510. https://doi.org/10.1520/GTJ20150202.
  25. Majer, J. (1955), "Zur berechnung von zugfundamenten", Osterreichische Bauzeitschrift", 10(5), 85-90.
  26. Matsuo, M. (1967), "Study on the uplift resistance of footing (I)", Soils Found., 7(4), 1-37. https://doi.org/10.3208/sandf1960.7.41.
  27. Matsuo, M. (1968), "Study on the uplift resistance of footing (II)", Soils Found., 8(1), 18-48. https://doi.org/10.3208/sandf1960.8.18.
  28. Meyerhof, G.G. (1959), "Compaction of sands and bearing capacity of piles", J. Soil Mech. Found. Div., 85(6), 1-29. https://doi.org/10.1061/JSFEAQ.0000231.
  29. Meyerhof, G.G. and Adams, J.I. (1968), "The ultimate uplift capacity of foundations", Can. Geotech. J., 5(4), 225-244. https://doi.org/10.1139/t68-024.
  30. Murray, E.J. and Geddes, J.D. (1987), "Uplift of anchor plates in sand", J. Geotech. Eng., 113(3), 202-215. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(202)
  31. Nazir, R., Moayedi, H., Pratikso, A. and Mosallanezhad, M. (2015), "The uplift load capacity of an enlarged base pier embedded in dry sand", Arab. J. Geosci., 8(9), 7285-7296. https://doi.org/10.1007/s12517-014-1721-3.
  32. Nguyen, A.D., Nguyen, V.T. and Kim, Y.S. (2023), "Finite element analysis on dynamic behavior of sheet pile quay wall dredged and improved seaside subsoil using cement deep mixing", Int. J. Geoeng., 14(1), 9. https://doi.org/10.1186/s40703-023-00186-x.
  33. Niroumand, H. and Kassim, K.A. (2013), "A review on uplift response of symmetrical anchor plates embedded in reinforced sand", Geomech. Eng., 5(3), 187-194. https://doi.org/10.12989/gae.2013.5.3.187.
  34. Ovesen, N.K. (1981), "Centrifuge tests of uplift capacity of anchors", Proceedings of the 10th. Int. Conf. on SMFE, Stockholm, Sweden, June.
  35. Perumalsamy, K. and Ranganathan, S. (2022), "Single pile in cohesionless soil in sloping ground under lateral loading", Int. J. Geoeng., 13(1), 8. https://doi.org/10.1186/s40703-022-00173-8.
  36. Takagagi, T., Tsutsui, M., Katoh, K. and Shimatani, Y. (1995), "Experimental study on pulling resistance of cast-in-place belled pile,-Part 1", In Annual Meeting of Architectural Institute of Japan., Japan.
  37. Qian, Z., Lu, X. and Yang, W. (2019), "Comparative field tests on straight-sided and belled piers on sloping ground under combined uplift and lateral loads", J. Geotech. Geoenviron. Eng., 145(12), 04018099. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001991.
  38. Qian, Z., Lu, X. and Yang, W. (2020), "Comparative lateral load field tests on straight-sided and belled piers in sloped ground", Geotech. Eng., 173(1), 70-80. https://doi.org/10.1680/jgeen.18.00151.
  39. Robinsky, E.I. and Morrison, C.F. (1964), "Sand displacement and compaction around model friction piles", Can. Geotech. J., 1(2), 81-93. https://doi.org/10.1139/t64-002.
  40. Schafer, M. and Madabhushi, S.P.G. (2020), "Uplift resistance of enlarged base pile foundations", Indian Geotech. J., 50(3), 426-441. https://doi.org/10.1007/s40098-019-00369-3.
  41. Shanker, K., Basudhar, P.K. and Patra, N.R. (2007), "Uplift capacity of single piles: predictions and performance", Geotech. Geol. Eng., 25(2), 151-161. https://doi.org/10.1007/s10706-006-9000-z.
  42. Sutherland, H.B. (1965), "Model studies for shaft raising through cohesionless soils", Proceedings of the 6th. Int. Conf. on SMFE, Montreal, Canada, September.
  43. Terzaghi, K. and Peck, R.B. (1948), Soil Mechanics in Engineering Practice, John Wiley and Sons, New York, NY, USA.
  44. Vashishtha, H.R. and Sawant, V.A. (2021), "An experimental investigation for pullout response of a single granular pile anchor in clayey soil", Int. J. Geoeng., 12(35), 1-19. https://doi.org/10.1186/s40703-021-00162-3.
  45. Vermeer, P.A. and Sutjiadi, W. (1985), "The uplift resistance of shallow embedded anchors", Proceedings of the 11th. Int. Conf. on SMFE, San Francisco, US, August.
  46. Wang, Q., Ma, J., Xiao, Z., Chen, W. and Ji, Y. (2020), "Field test on uplift bearing capacity of rock-socketed belled piles", KSCE J. Civ. Eng., 24(8), 2353-2363. https://doi.org/10.1007/s12205-020-2011-0.