• Title/Summary/Keyword: Piezo-Actuators

Search Result 69, Processing Time 0.026 seconds

Analysis of Frequency Response of Piezo Stages and Scanning Path Monitoring/Compensation for Scanning Laser Optical Tweezers (주사 레이저 광집게를 위한 압전 구동기 주파수 특성 분석과 주사 경로 추적 및 보상)

  • Hwang, Sun-Uk;Lee, Song-Woo;Lee, Yong-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.132-139
    • /
    • 2008
  • In scanning laser optical tweezers, high speed scanning stages are used to manipulate a laser beam spot. Due to the inertia of the stage, the output scanning signal decreases with increased frequency of the input signal. This discrepancy in the signals is difficult to observe since most of the energy from the laser beam is blocked out to avoid CCD damage. In this paper, we propose two methods to alleviate these problems. Firstly, frequency responses of piezo stages are measured to analyze the signal drops and the input signal is compensated accordingly. Secondly, an overlay of the scanning path is drawn on the live monitoring screen to enhance the visibility of the scanning path. The result is a drop-compensated scanning with clear path view.

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

A Pilot Study of Implementing Bender Element to In-situ Civil Engineering Measurement (현장 토목 계측을 위한 벤더 엘리멘트의 적용성 연구)

  • Jung Jae-Woo;Jang In-Sung;Mok Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.215-223
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy from mechanical to electrical forms and vice versa. Bender elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements could be very promising.

Design of Cymbal Displacement Amplification Device for Micro Punching System (마이크로 펀칭시스템 구현을 위한 심벌변위확대기구의 설계)

  • Choi, Jong-Pil;Lee, Kwang-Ho;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Seong-Uk;Chu, Andy;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • This paper presents the development of a micro punching system with modified cymbal mechanism. To realize the micro punching, we introduced the hybrid system with a macro moving part and micro punching part. The macro moving part consists of a ball screw, a linear guide and the micro step motor and micro punching part includes the PZT actuators and displacement amplification device with modified cymbal mechanism. The PZT actuator is capable of producing very large force, but they provide only limited displacements which are several micro meters. Thus the displacement amplification device is necessary to make those actuators more efficient and useful. For this purpose, a cymbal mechanism in series is proposed. The finite element method was used to design the cymbal mechanism and to analyze the mode shape of the one. The displacement and mode shape error between the FEM results and experiments are within 10%. A considerable design effort has been focused on optimizing the flexure hinge to increase the output displacement and punching force.

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Beam Rotator of Optical System Based on Multi-Beam (다중 광선을 이용한 광 시스템의 광선 회전기)

  • 이정현;한창수;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.194-201
    • /
    • 1998
  • The beam rotating actuator has been developed. It can be utilized to improve the data transfer rate for the optical disk systems, Newly developed laser beam rotating actuator is applied to put multi-beam spots on more than one track on the optical disk simultaneously. The beam rotating actuator is made of piezoelectric ceramic bimorph as the form of cantilever, Piezoelectric actuators with high resolution, high stiffness and fast frequency response are widely assembled in micropositioning applications. Therefore, the actuator has above 50Hz natural frequency. Beam array is rotated using the dove prism in the end of beamrotator. The dynamic equation of beam rotating actuator is derived theoretically. The actuator is designed on the ground of this analysis. The performance of the beam rotating actuator is verified as the dynamics frequency performance is measured using the dynamic analyzer and sensor.

  • PDF

The Development of High Precision Manipulator and Micro Gripper (미세 작업을 위한 마이크로-나노 로봇개발)

  • Lee, Jong-Bae;Park, Chang-Woo;Kim, Bong-Seok;Park, Jun-Sik;Sung, Ha-Gyeong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • In this paper, a robotic system which consists of a precision manipulator and a micro gripper for a micro system assembly is presented. By the experiment, we proved that the developed the system gives acceptable performance when minute operations. Developed the micro-nano robot is actuated by newly proposed modular revolute and prismatic actuators. As an end-effector of this system, micro gripper is designed and fabricated with MEMS technology and the displacement of jaw is up to 142.8 micro meter. We think that new robot system will be appropriate for micro system assembly tasks and life science application.

  • PDF

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Force/Torque Control of Ultrasonic Motor with PWM Driving Method (PWM 구동방식을 이용한 초음파 모터의 힘/ 토크제어)

  • 최병현;최혁렬
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2723-2731
    • /
    • 2000
  • Ultrasonic motors(USM) has been emerging as one type actuators, which possess many advantages such as high torque, low weight, compact size and no magnetic field generation. In spite of these features, there are several problems to be solved, which are temperature rise in case of long term operation, non -linearity, and hysteresis. Among these, hysteresis cause the most serious problem in force/torque control applications. To cope with this paper we propose a new PWM driving method which can be applied to force/torque control applications. To cope with this problem, in this paper we propose a new PWM driving method which can applied to force/torque control of USM. To verify the proposed method, an experimental setup was built and several experiments were performed.

Contractile Force Measurements of Cardiac Myocytes Using a Micro-manipulation System

  • Park Suk-Ho;Ryu Seok-Kyu;Ryu Seok-Chang;Kim Deok-Ho;Kim Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.668-674
    • /
    • 2006
  • In order to develop a cell based robot, we present a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source. The proposed measurement system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recording system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitudes of the contractile force of each cardiac myocyte under different conditions were compared. From the quantitative experimental results, we could estimate that the force of cardiac myocytes is about $20\sim40{\mu}N$, and show that there are differences between the control cells and the micro-patterned cells.