• Title/Summary/Keyword: Piezo valve

Search Result 20, Processing Time 0.043 seconds

Operation Limit of Flow Control for a Bistable Fluidic Valve

  • Lee, Ji Ung;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.389-394
    • /
    • 2017
  • The limitation of flow control for a bistable fluidic valve has been investigated. The physical model of the fluidic valve includes two main flow outlets and two control flow inlets. The experiments were conducted with pressure regulators, mass flow meters, and piezo sensors to analyze flow switching characteristics of the fluidic valve. The experimental data such as pressure and mass flow rate of control flows and the switching time of the main flow was obtained with various operating conditions. The operation limit of the fluidic valve is identified, and a model equation for pre-estimating the minimum control pressure to switch the direction of the main flow has been proposed.

Analysis of Flow Characteristics of Multilayer Type Piezo Valve (적층형 압전밸브의 유동특성 해석)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.946-949
    • /
    • 2003
  • This paper reports on the fluid flow simulation results of a multilayer type piezoelectric valve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed type using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a MLCA(Multilayer Type Ceramic Actuator). It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in valve. Thus, it is expected that our simulation results would be apply for piezoelectric applications such as valve and pump, fluidic control systems.

  • PDF

A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve (벤더형 고응답 압전밸브의 주파수 특성에 관한 연구)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.;Lee, S.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

Fabrication of a Micro Multilayer Piezo Actuator Valve and Its Characteristics (마이크로 적층형 압전밸브의 제작과 그 특성)

  • Chung, Gwiy-Sang;Kimm, Jae-Min;Cho, Sang-Bock
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.913-916
    • /
    • 2005
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}pa$. $m^3/cm^2$.

  • PDF

Design Optimization for the Magnetic Engine Valve Actuator (엔진 밸브 자기 구동기의 설계 최적화)

  • Soh, Hyun-Jun;Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.

Implementation of the Mass Flow Controller using Adaptive PID (적응 PID를 이용한 질량 유량 제어기 구현)

  • Baek, Kwang-Ryul;Cho, Bong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • The MFC(Mass Flow Controller) is an equipment that measures and controls mass flow rates of fluid. Most of the HFC system is still using the PID algorithm. The PID algorithm shows superior performance on the MFC system. But the PID algorithm in the MFC system has a few problems as followed. The characteristic of the MFC system is changed according to the operating environment. And, when the piezo valve that uses the control valve is assembled in the MFC system, a coupling error is generated. Therefore, it is very difficult to find out the exact parameters of MFC system. In this paper, we propose adaptive PID algorithm in order to compensate these problems of a traditional PID algorithm. The adaptive PID algorithm estimates the parameters of MFC system using LMS(Least Mean Square) algorithm and calculates the coefficients of PID controller. Besides, adaptive PID algorithm shows better transient response because adaptive PID algorithm includes a feedforward. And we implement MFC system using proposed adaptive PID algorithm with self-tuning and Ziegler and Nickels's method. Finally, comparative analysis of the proposed adaptive PID and the traditional PID is shown.

Design of a New Dispensing System Featuring Piezoelectric Actuator (압전 작동기를 이용한 새로운 디스펜싱 시스템 설계)

  • Hung, Nguyen Quoc;Choi, Min-Kyu;Yoon, Bo-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.821-826
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezo actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

  • PDF

Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator (양방향 압전-유압 하이브리드 구동장치의 성능 시험)

  • Jin, Xiaolong;Ha, Ngocsan;Goo, Namseo;Bae, Byungwoon;Kim, Taeheun;Ko, Hanseo;Lee, Changseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.