• Title/Summary/Keyword: Picosecond Laser

Search Result 75, Processing Time 0.028 seconds

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.

A novel method for calculation of dispersions in biaxial crystals for frequency conversion of short pulse lasers (극초단 펄스 레이저의 파장변환을 위한 이축 비선형 광학 결정에서 분산의 새로운 계산법)

  • Park Jae U;Yun Chun Seop
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.222-223
    • /
    • 2003
  • As laser pulse width becomes shortened from nanoseconds to femtoseconds, the effects caused by the dispersions of nonlinear optical mediums, such as group velocity mismatch and group velocity dispersion become considerably significant. The group velocity mismatch and group velocity dispersion are the major factors that lead to a decrease of frequency conversion efficiency and pulse spreading for picosecond and femtosecond pulses. (omitted)

  • PDF

White-light Continuum Generation by a picosecond laser pulse (피코초 레이저 펄스에 의한 백색광 발생)

  • 강명균;이승묵;김도석;이범구
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.244-245
    • /
    • 2001
  • 강한 펄스 레이저가 렌즈에 의해 투명한 매질 속에 집광되면 가시광선 영역에서부터 적외선 영역에 걸친 넓은 파장대의 빛이 발생하게 되는데 이것을 White-Light Continuum이라고 한다. 이 현상은 1970년에 Alfano 와 Shapiro에 의해 처음으로 발견되었으며 그 후에 여러 투명한 매질들을 통해 White-light continuum의 발생이 확인되었다. 물($H_2O$)과 중수(D$_2$O)에서도 이런 펄스 백색광의 발생이 관찰되어졌으며 고체 매질에 비해 집광된 강한 빛에 의해 생기는 손상에 대한 self-healing이 뛰어나 백색광을 발생시키기 위한 이상적인 매질로 인식도고 있다. (중략)

  • PDF

Characteristic of the femtosecond laser machining in glass (펨토초 레이어 기반 유리 내부가공 특성)

  • Yoo B.H.;Kim Y.M.;Cho S.H.;Chang W.S.;Kim J.G.;Whang K.H.;Lee D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.239-240
    • /
    • 2006
  • For longer than picosecond pulses, bulk damage inside defect-free dielectrics involves the heating and multiplication of spurious electrons by the incident laser beam and transfer of this energy to the lattice. The situation is quite different for femtosecond pulses which are shorter than the time scale for electron energy transfer to the lattice. Damage caused by these pulses is produced with smaller statistical uncertainty and is controllable on a microscopic scale. These properties can be exploited to produce laser devices such as arrays of damage dots for all optical memories with high data storage density or arrays of parallel grooves to form transmission gratings. In this work, we observed characteristic of the femtosecond laser machining in BK7 and fused silica.

  • PDF

Picosecond Fluorescence Lifetimes of Hematoporphyrin Derivatives in Solutions and in vitro (용액 및 시험관 실험에서의 헤마토포르피린 유도체 분자의 피코초 형광수명시간 분석)

  • Kim, Hyun-Soo;Chu, Sung-Sil;Kim, Gwi-Eon;Lee, Won-Young;Kim, Ung
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.61-70
    • /
    • 1995
  • The picosecond time resolved fluorescence spectra of Hematoporphyrin Derivative (HPD) in both solutions and cancer cell are measured by a time correlated single photon counting system with a synchronously mode locked dye laser. Two exoponential decay components in the fluorescence spectra were observed. The slow decay(6.3 ㎱)and the fast one(350 ㎰)are attributed to be originated from monomers and dimers, respectively. The absorption and fluorescence measurements in steady state also showed the presence of a monomeric and dimeric forms of HPD molecules. The monomer lifetime in the cancer cell was measured to be longer than that in solution, which was expected from the blue shift and narrowing of the absorption spectra for HPD-treated in vitro. The relative amplitude of the fast component was found to be enhanced in cancer cell, strongly indicating the higher affinity of the dimer for the cancer cell.

  • PDF

10 GHz wavelength tunable mode-locked filber ring laser configured with all polarization maintaining fiber (편광유지 광섬유로 구성된 10 GHz 파장가변 모드록킹 광섬유 고리형 레이저 제작 및 특성연구)

  • 김봉규;김명욱;전영민;이정찬;김상국;최상삼
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.270-273
    • /
    • 1998
  • We have demonstrated the wavelength tunable ultrashort pulse fiber ring laser proposed the novel method for measuring the cavity loss from relaxation oscillation frequency and the pump power. To suppress the polarization instability the laser cavity is configured with polarization maintaining fibers and to control the center wavelength a 2.4 nm bandwidth tunable wavelength filter was inserted in the cavity. The laser has 8 picosecond pulse width, 10 GHz repetition rate and 1.2 mW average power in 1530-1560 nm operation range.

  • PDF

Ultrafast Femtosecond Lasers: Fundamentals and Applications (펨토초 레이저의 원리 및 응용)

  • Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Man;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.7-16
    • /
    • 2010
  • Physical fundamentals of ultrashort femtosecond lasers are addressed along with emerging applications for precision manufacturing and metrology. Femtosecond lasers emit short pulses whose temporal width is in the range of less than a picosecond to a few femtoseconds, thereby enabling extremely high peak-power machining with less thermal damages. Besides, the broad spectral bandwidth of femtosecond lasers constructed in the form of frequency comb permits absolute distance measurements leading to ultraprecision positioning control and dimensional metrology.

Fabrication and Chracteristics of Cutting Cell with Various Laser Conditions (다양한 레이저 조건에 따른 컷팅셀 제작 및 특성 분석)

  • Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Jang, Jae Joon;Lim, Dong gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Laser cutting cell of solar cells can achieve high voltage and efficiency through more array than conventional 6 inch cell compared to same area. In this study, we fabricated c-Si cutting cell with various lasers and laser conditions such as power, speed, and number of times. In the case of picosecond laser, excellent surface characteristics were obtained due to small surface defects and low thermal damage at the output of 20W and the speed of 100 mm/s. However, it is not possible to fabricate a cutting cell having good characteristics due to nonuniform cutting inside the wafer when the processing for forming a cutting cell is not sufficiently performed. For nanosecond lasers, the best wafer characteristics were obtained for fabrication of excellent cutting cells at a frequency of 500 kHz and a laser speed of 100 mm/s. However, the nanosecond laser has not been processed sufficiently in the condition of a number of times. As a result, it was confirmed that the wafer thickness was cut by $63{\mu}m$ of the cell thickness of $170{\mu}m$ in the condition of five times of laser process. It was found that more than 30% of the wafer thickness had to be processed to fabricate the cutting cell. After cutting the 6-inch cell having the voltage of 0.65 V, we obtained the voltage of about 0.63 V.

Sum-frequency Generation Using a Mode-locked Pulsed Laser and a Continuous-wave Diode Laser (모드 잠금된 펄스 레이저와 연속 발진하는 반도체 레이저를 이용한 합주파수 생성)

  • Kim, Hyunhak;Park, Nam Hun;Yeom, Dong-Il;Cha, Myoungsik;Moon, Han Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.62-67
    • /
    • 2021
  • We have experimentally demonstrated sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) crystal, using a mode-locked picosecond-pulsed fiber laser and a continuous-wave (CW) diode laser with a narrow linewidth. The mode-locked fiber laser had a center wavelength of 1560.7 nm and a spectral width of 1.1 nm, and the CW diode laser had a center wavelength of 1551.0 nm and a spectral width of 6 MHz. To effectively realize SFG, both of the spatial modes of the two lasers were made to overlap in the PPLN crystal by using a single-mode optical fiber. The pulse-mode SFG with pulsed- and CW-mode lasers was successfully observed in the spectral and time domains. These results are expected to be applicable in various ways, such as optical frequency measurement and high-resolution laser spectroscopy studies using optical frequency combs.