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A novel method for calculation of dispersions in biaxial

crystals for frequency conversion of short pulse lasers
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As laser pulse width becomes shortened from nanoseconds to femtoseconds, the effects caused
by the dispersions of nonlinear optical mediums, such as group velocity mismatch and group
velocity dispersion become considerably significant. The group velocity mismatch and group velocity
dispersion are the major factors that lead to a decrease of frequency conversion efficiency and pulse
spreading(l) for picosecond and femtosecond pulses. Much studies on the influence of the dispersions
and the methods to ovecome them have been reported.(z’ ¥ For the detailed investigation of the
dispersion effects, it is inevitable to calculate the dispersions in a nonlinear medium using Sellmeiers
equation. However, calculation of the dispersions along the different crystal orientations involves a
lot of complications, because the dispersions, in general, vary widely depending on the wave
propagation direction in anisotropic crystals.

In the previous methodu), dispersion is obtained by direct differentiation of refractive indices with
respect to wavelength. Since the refractive indices® for the two eigen modes in biaxial crystals are
represented by a complicated function of the principal refractive indices as in eq. (1), calculation of
the dispersion incurrs a great deal of complication, especially for higher-order terms.
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,where B=—s;(b+c)-s)(a+c)-si(a+b),

n

_ 2 2 2
C=s.bc+s ac+s;ab,

-2 -2 -2
a=m,b=m,c=m.

Here, sx=sinBcos®, s,=sinbsing, and s.=cos8b.
We propose a novel method that allows the dispersion in biaxial crystals to be estimated with
much ease. The result is expressed in eq. (2), which is derived from the differentials of wave

equation.
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, where y=—-sf(ﬂ+}/)—s:(a+y)—sf(a+ﬂ),
v=slpy+siay+siap,
a=Q0% =0, 7y=0Q.

In Table 1, Ki and &7 ( = x, y, 2) are shown for i = 1, 2, 3, where k is wave number and
k.’; denote the dispersions of i-th order. As shown in eq. (2) and Table 1, our method provides
much more efficient means of calculating the dispersions, especially for higher-order terms, because
it only necessitates solving Fresnel’s equation, and K's and -Qljz ‘s have recursive relations as in

ers. (3) and (4).

Table 1. K; and 27(G = x, v, 2) for i = 1, 2, 3.
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