DOI QR코드

DOI QR Code

Sum-frequency Generation Using a Mode-locked Pulsed Laser and a Continuous-wave Diode Laser

모드 잠금된 펄스 레이저와 연속 발진하는 반도체 레이저를 이용한 합주파수 생성

  • Received : 2020.12.31
  • Accepted : 2021.01.26
  • Published : 2021.04.25

Abstract

We have experimentally demonstrated sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) crystal, using a mode-locked picosecond-pulsed fiber laser and a continuous-wave (CW) diode laser with a narrow linewidth. The mode-locked fiber laser had a center wavelength of 1560.7 nm and a spectral width of 1.1 nm, and the CW diode laser had a center wavelength of 1551.0 nm and a spectral width of 6 MHz. To effectively realize SFG, both of the spatial modes of the two lasers were made to overlap in the PPLN crystal by using a single-mode optical fiber. The pulse-mode SFG with pulsed- and CW-mode lasers was successfully observed in the spectral and time domains. These results are expected to be applicable in various ways, such as optical frequency measurement and high-resolution laser spectroscopy studies using optical frequency combs.

본 연구에서는 모드 잠금된 ps-펄스 광섬유 레이저와 연속 발진하는 좁은 선폭의 반도체 레이저를 이용하여 주기적 분극반전된 LiNbO3(periodically poled lithium niobate; PPLN) 결정에서 합주파수 생성 연구를 수행하였다. 모드 잠금된 펄스 레이저는 중심 파장이 1560.7 nm이고 스펙트럼의 폭은 약 1.1 nm이며, 연속 발진 반도체 레이저는 중심 파장이 1551 nm이고 스펙트럼의 폭은 약 6 MHz로 동작한다. 합주파수 생성을 효과적으로 수행하기 위해서 하나의 단일 모드 광섬유를 이용하여 PPLN 결정 내부에서 두 펌프 광원을 공간적으로 완전히 중첩하였다. 모드 잠금된 펄스 레이저와 좁은 선폭의 연속발진 반도체 레이저에 의해서 모드 잠금된 펄스 형태의 778 nm인 합주파수 생성을 스펙트럼과 시간적인 변화로 확인하였다. 본 연구 결과는 주파수 제어가 가능한 광주파수 빗(optical frequency comb)을 이용한 광주파수 측정 및 고분해 레이저 분광 연구 등 다양하게 응용될 수 있을 것으로 기대된다.

Keywords

References

  1. A. M. Weiner, Ultrafast Optics (John Wiley & Sons, Hoboken, NJ, USA, 2009).
  2. H. Cui, B. Hu, and W. L. Zhang, "Mode locking with selective repetition rates through a disordered fiber laser cavity," in Proc. Asia Communications and Photonics Conference - ACP (Chengdu, China, November 2019), pp. 1-3.
  3. B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jorgensen,"Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12, 4999-5004 (2004). https://doi.org/10.1364/OPEX.12.004999
  4. J. Kim and Y. Song, "Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications," Adv. Opt. Photonics 8, 465-540 (2016). https://doi.org/10.1364/AOP.8.000465
  5. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, "A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator," Opt. Express 18, 1667-1676 (2010). https://doi.org/10.1364/OE.18.001667
  6. K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F.-L. Hong, "Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control," Opt. Express 20, 13769-13776 (2012). https://doi.org/10.1364/OE.20.013769
  7. Y. P. Kim, J. H. Jo, and T. H. Yoon, "Operational characteristics of a single longitudinal mode," Proc. Opt. Soc. Korea Conf. 31, 71-75 (1991).
  8. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, "Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator," Opt. Lett. 30, 2948-2950 (2005). https://doi.org/10.1364/OL.30.002948
  9. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, "Control of the frequency comb from a mode-locked Erbium-doped fiber laser," Opt. Express 10, 1404-1410 (2002). https://doi.org/10.1364/OE.10.001404
  10. O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B 91, 343-348 (2008). https://doi.org/10.1007/s00340-008-2998-2
  11. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, MA, USA, 2008).
  12. H. Tsuchida, "Simple technique for improving the resolution of the delayed self-heterodyne method," Opt. Lett. 15, 640-642 (1990). https://doi.org/10.1364/OL.15.000640
  13. A. Canagasabey, A. Michie, J. Canning, J. Holdsworth, S. Fleming, H.-C. Wang, and M. L. Åslund, "A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers," Sensors 11, 9233-9241 (2011). https://doi.org/10.3390/s111009233
  14. M. A. C. De Araujo, R. Silva, E. De Lima, D. P. Pereira, and P. C. De Oliveira, "Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis," Appl. Opt. 48, 393-396 (2009). https://doi.org/10.1364/AO.48.000393
  15. M. Gonzalez-Cardel, P. Arguijo, and R. Diaz-Uribe, "Gaussian beam radius measurement with a knife-edge: a polynomial approximation to the inverse error function," Appl. Opt. 52, 3849-3855 (2013). https://doi.org/10.1364/AO.52.003849
  16. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker Inc., NY, USA, 2003).
  17. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997). https://doi.org/10.1364/OL.22.001553