• Title/Summary/Keyword: Pick and place system

Search Result 28, Processing Time 0.023 seconds

Manipulator with Camera for Mobile Robots (모바일 로봇을 위한 카메라 탑재 매니퓰레이터)

  • Lee Jun-Woo;Choe, Kyoung-Geun;Cho, Hun-Hee;Jeong, Seong-Kyun;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.507-514
    • /
    • 2022
  • Mobile manipulators are getting lime light in the field of home automation due to their mobility and manipulation capabilities. In this paper, we developed a small size manipulator system that can be mounted on a mobile robot as a preliminary study to develop a mobile manipulator. The developed manipulator has four degree-of-freedom. At the end-effector of manipulator, there are a camera and a gripper to recognize and manipulate the object. One of four degree-of-freedom is linear motion in vertical direction for better interaction with human hands which are located higher than the mobile manipulator. The developed manipulator was designed to dispose the four actuators close to the base of the manipulator to reduce rotational inertia of the manipulator, which improves stability of manipulation and reduces the risk of rollover. The developed manipulator repeatedly performed a pick and place task and successfully manipulate the object within the workspace of manipulator.

Smart Card Reader기 Connector 조립 및 Vision 검사용 자동화기기 개발에 관한 연구

  • 노병옥;성하경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.543-548
    • /
    • 1994
  • This is the paper on the development of assemnly automation and visual inspection system for smart card reader connector. The automation consists of 3 main process injection, assembly and inspection. During the injection, the main pin of a reel. transferred under uniform tension, is cut with an injection interval and positioned precisely to an injection mold by roll feeder after injection. The main base is stacked to a magazine for main pin's exact positionning to a mold . For last effective production, The turn table and pick & place are driver with gears and came by a single monter. We developed the small parts handling technigue for stable supply of micro ist pin and 2nd pin and could determine the orientation and position of those pins. For reliable inspection, We used the vision system which examins the guality of arranged pins with a CCD camera. The connector models which can be manufactured with this system are 8 pin and 10 pin type. The user can select the connector model for production and adjust the torerable error range during the inspection of arranged pins.

  • PDF

Evolutionary Generation of the Motions for Cooperative Work between Humanoid and Mobile Robot (휴머노이드와 모바일 로봇의 협조작업을 위한 진화적 동작 생성)

  • Jang, Jae-Young;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this paper, a prototype of cooperative work model for multi-robots system is introduced and the evolutionary approach is applied to generate the motions for the cooperative works of multi-robots system using genetic algorithm. The cooperative tasks can be performed by a humanoid robot and a mobile robot to deliver objects from shelves. Generation of the humanoid motions such as pick up, rotation, and place operation for the cooperative works are evolved. Modeling and computer simulation for the cooperative robots system are executed in Webots environments. Experimental results show the feasible and reasonable solutions for humanoid cooperative tasks are obtained.

Integrated System of Mobile Manipulator with Speech Recognition and Deep Learning-based Object Detection (음성인식과 딥러닝 기반 객체 인식 기술이 접목된 모바일 매니퓰레이터 통합 시스템)

  • Jang, Dongyeol;Yoo, Seungryeol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.270-275
    • /
    • 2021
  • Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.

Development of an unloading manipulator for micro manufacturing system (마이크로 가공시스템을 위한 언로딩 매니퓰레이터 개발)

  • Yun, Deok-Won;Shin, Dong-Ik;Kim, Jin-Ho;Han, Chang-Soo;Lee, Nak-Kyu;Lee, Hye-Jin;Ryuh, Young-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.187-192
    • /
    • 2007
  • In this paper we present a 3-DOF manipulator of which task is to unload the product from a micro factory. The micro factory developed by KITECH presses sheet metal to produce a micro valve that is used for micro pump. Our research is focused on the development of a small-sized unloading manipulator which works in the narrow workspace between the dies. We have implemented pick-and-place task with vacuum pressure and 3-DOF motion with stepping motors. We present the design procedures and analysis required in each module.

Depth Evaluation from Pattern Projection Optimized for Automated Electronics Assembling Robots

  • Park, Jong-Rul;Cho, Jun Dong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.195-204
    • /
    • 2014
  • This paper presents the depth evaluation for object detection by automated assembling robots. Pattern distortion analysis from a structured light system identifies an object with the greatest depth from its background. An automated assembling robot should prior select and pick an object with the greatest depth to reduce the physical harm during the picking action of the robot arm. Object detection is then combined with a depth evaluation to provide contour, showing the edges of an object with the greatest depth. The contour provides shape information to an automated assembling robot, which equips the laser based proxy sensor, for picking up and placing an object in the intended place. The depth evaluation process using structured light for an automated electronics assembling robot is accelerated for an image frame to be used for computation using the simplest experimental set, which consists of a single camera and projector. The experiments for the depth evaluation process required 31 ms to 32 ms, which were optimized for the robot vision system that equips a 30-frames-per-second camera.

New Suction Mechanism Using Permanent Magnet (영구자석을 이용한 새로운 Suction Mechanism)

  • Seo Sungkeun;Lee Seunghee;Park Jong Hyeon;Jang Taesa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1645-1652
    • /
    • 2005
  • Pick-and-place systems using suction cups have been being widely used and continuously developed in production automation. There are, however, some drawbacks in constructing such systems. One of them is that it generates high level noise due to air compressors. And the system must have complex constitutions of mechanical component such as air compressors, air tubes, air valves, etc. Moreover, it needs continuous air supply to maintain vacuum in suction cups. If there is a failure in any suction cup, the total suction system may fail owing to air leakage. To overcome these drawbacks, we propose PMS (Permanent Magnet Suction) mechanism which has permanent magnets for vacuuming suction cups with no air compressor. The basic concept of PMS mechanism is to rotate permanent magnets with fixed angle. Simple rotation of permanent magnets changes the direction of the magnetic force applied at the suction cups. Since each suction cup has no direct connection with any of the others, the air leakage at one suction cup is not critical. The proposed suction mechanism was designed and fabricated. With some experiments, the feasibility and performance of the PMS mechanism was shown. The strong points of the PMS mechanism are in its simple structure, generating low noise, high energy efficiency, and no need of continuous energy supply.

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.

A Study on the Intelligent Recognition of a Various Electronic Components and Alignment Method with Vision (지능적인 이형부품 인식과 비전 정렬 방법에 관한 연구)

  • Gyunseob Shin;Jongwon Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2024
  • In the electronics industry, a lot of research and development is being conducted on electronic component supply, component alignment and insertion, and automation of soldering on the back side of the PCB for automatic PCB assembly. Additionally, as the use of electronic components increases in the automotive component field, there is a growing need to automate the alignment and insertion of components with leads such as transistors, coils, and fuses on PCB. In response to these demands, the types of PCB and parts used have been more various, and as this industrial trend, the quantity and placement of automation equipment that supplies, aligns, inserts, and solders components has become important in PCB manufacturing plants. It is also necessary to reduce the pre-setting time before using each automation equipment. In this study, we propose a method in which a vision system recognizes the type of component and simultaneously corrects alignment errors during the process of aligning and inserting various types of electronic components. The proposed method is effective in manufacturing various types of PCBs by minimizing the amount of automatic equipment inserted after alignment with the component supply device and omitting the preset process depending on the type of component supplied. Also the advantage of the proposed method is that the structure of the existing automatic insertion machine can be easily modified and utilized without major changes.

  • PDF

Mechanical and Adhesional Manipulation Technique for Micro-assembly under SEM

  • Saito, S.;Takahashi, K.;Onzawa, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact Interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By referring to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF