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Abstract: This paper presents the depth evaluation for object detection by automated assembling 
robots. Pattern distortion analysis from a structured light system identifies an object with the 
greatest depth from its background. An automated assembling robot should prior select and pick an 
object with the greatest depth to reduce the physical harm during the picking action of the robot 
arm. Object detection is then combined with a depth evaluation to provide contour, showing the 
edges of an object with the greatest depth. The contour provides shape information to an automated 
assembling robot, which equips the laser based proxy sensor, for picking up and placing an object 
in the intended place. The depth evaluation process using structured light for an automated 
electronics assembling robot is accelerated for an image frame to be used for computation using the 
simplest experimental set, which consists of a single camera and projector. The experiments for the 
depth evaluation process required 31 ms to 32 ms, which were optimized for the robot vision 
system that equips a 30-frames-per-second camera.     
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1. Introduction 

The image categorization algorithm in robotics is based 
on the visual information acquired from the system that 
operates robots [1]. The robot vision system suites for 
target tracking in automated surveillance systems and 
traffic-jam detection for traffic controls [2]. The robot 
should identify objects detected from its vision system. 
Connected component labeling is one of fundamental 
issues in image processing, including computer vision, and 
machine intelligence [3, 4].  

The robot vision system provides visionary information 
for the control part of the vision system via object 
recognition process. The object recognition process acts 

similar to the process of the vision system of human beings 
because the recognition process distinguishes objects from 
the background of the objects. A robot vision system 
should recognize objects within several milliseconds for 
the proper operation of robotics.  

Automated electronic parts assembling robot requires a 
faster object detection process. Faster object detection 
contributes more to the manufacturing capability of an 
automated robot. For a real-time object recognition process, 
the image pixel data to be processed within the system 
should be simplified to reduce the computational load. 

First, to achieve faster object detection, an image 
binarization process is used as a pre-processing stage. The 
image binarization achieves a lower computational load of 
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the vision system of an automated assembling robot. 
During the image binarization process, the shadowed 

areas near an object tend to be detected as a part of the 
object. Although studies on shadow detection have been 
performed, there has been insufficient research on shadow 
removal to achieve significant development [5]. Removing 
the shadows carries a risk of deleting some parts of the 
original object that generated the shadow. Shading occurs 
as a result of the texture of the material of an object 
interfering with a light source [5]. The shadow removal 
method proposed by Finlayson [6] performs operations for 
an illumination invariant image. Because the edges in a 
shadowed area are not a part of the illumination invariant 
image, the shadows are canceled out. The illumination 
invariant image has the following assumptions. The 
camera input sensor responses are proportional to the 
luminance of the light source with the narrow setting of 
camera sensor response, which is similar to the Dirac delta 
function, and the source of light is based on Planckian 
lighting [5]. The grayscale intensity distribution depends 
on the light reflection ratio between an object and its 
background. The following formula [5] represents a light 
illumination model considering light source illumination, 
object reflectance, and vision sensor characteristics. E(λ) 
represents the spectral power distribution of the 
illumination, which is approximated by Planck’s law, S(λ) 
represents the surface reflectance distribution,  
represents the sensor sensitivity distribution, and the 
variable k represents the red, green, blue light sources [5]. 
  

         (1) 
 
In the next stage, pattern analysis of structured light is 

applied to select an object with the greatest depth for 
multiple objects on the same background image. 
Structured light is projected from a light source with 
uniform patterns to both the target object and its 
background part. 

Among the different depth evaluation values within the 
entire image frame, an object with the highest depth from 
the background is selected first for automated 
manufacturing robots. The automated manufacturing robot 
equips its arm to pick up an object and place the object in 
the target place in the right direction to assemble 
electronics. The object is normally a kind of small chip, so 
the chips are stacked together. 

While an arm of the assembling robot picks up a 
stacked object, the robot arm damages the other stacked 
objects. On the other hand, when the robot arm picks up an 
object with the highest depth, physical contact between the 
robot arm and neighbored objects is reduced. The reduced 
physical contact minimizes the chances of physical 
damage during the picking action of an automated 
assembling robot. 

The connected component labeling [7] stage then 
detects objects in an image frame. The image labeling 
process selects informative objects by discarding the 
background image within the same frame of image. The 
connected component labeling utilizes the concept of 
grouped pixel coordinates, which represents a unique 

object within an image frame. Connected component 
labeling checks both the grouped pixels and their 
surrounding pixels to determine if they are composed of 
connected component pixels for an object. The connected 
component algorithm scans each pixel, and assigns the 
temporary labels. The value of each temporary label is 
checked for the connectivity between pixels. When the 
value of the temporary labels among the connected pixels 
is different from each other, the second pixel scan replaces 
each temporary label [8]. 

Finally, the highest depth location from pattern analysis 
is matched with the location of the detected object. An 
object with the highest depth is then selected. The 
proposed labeling stage determines the connected 
component pixels of the contour of objects. The contour 
map of an object with the greatest depth is then given to an 
automated assembling robot. The remainder of this paper 
is organizes as follows. Section II introduces the proposed 
algorithm with an analysis of the experimental results. The 
concluding remarks are reported in the final section. 

2. The Algorithms 

Image binarization stage discriminates the objects from 
their background with a 2-bit level of grayscale intensity, 
which helps minimize the computational load for 
automated electronics robots. The image binarization 
includes a grayscale intensity distribution comparison 
between an object and shadow area to regard the shadow 
as a background, not a part of an object. The image 
labeling stage then represents each detected object, which 
is from a binary image, in several grayscale intensities to 
label each object. The relative depth information among 
the labeled objects results from different pattern reflection 
angles of the objects.  

This proposed approach for a relative depth evaluation 
for an automated assembling robot evaluates the range of 
pixel coordinates with the greatest depth among stacked 
objects from distorted pattern due to the different pattern 
reflection angles. 

The pixel coordinates range with the most depth 
information is then matched with the pixel coordinates of 
the labeled objects. The grayscale intensity in the highest 
depth region is then extracted. Only those pixels showing 
the same grayscale intensity in the greatest depth region 
remain still and the other pixels are regarded as a 
background part. As a result, the remaining pixels 
represent the contour of the labeled object. 

Finally, an automated electronics assembling robot 
recognizes the shape and location of the object contour, 
and attempts to pick up the object. An arm of the robot has 
a laser based proxy sensor to detect how close the target 
objects are. When most of the object is close enough to be 
picked up, the robot begins its proper actions. Fig. 1 shows 
the algorithms used for the depth evaluation for a robot 
vision application. Each block diagram represents a 
modification of a conventional algorithm for an automated 
electronics assembly robot. 
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2.1 Image Binarization with Shadow 
Removing 

Image binarization, which converts an image composed 
of pixels in 0 and 255 grayscale intensities, reduces the 
computational load for faster further image processing. 
Because a background image and objects show a different 
distribution of grayscale intensities, an algorithm is used to 
determine the objects from their common background 
image. 

The binary image lowers the amount of imprecise 
visionary information among every object in one frame of 
an image, because a binary image first distinguishes the 
detectable objects from their background image. The 
binary image helps shorten the time needed for to detect 
objects when using a connected component algorithm. The 
classic connected components labeling algorithms in 
image processing and computer vision area rely mostly on 
the scanning of two connected components in a binary 
image [8]. 

In this experiment, an object in an image frame 
generates a shadow due to the limited source of light. The 
shadowed area is not filtered by the threshold value of the 
grayscale intensity variance between the object and its 
background. On the other hand, a comparison of the 
variance of grayscale intensity between the object part and 
its shadowed part cancels out the shadowed area in the 
proposed image binarization scheme. 

The image binarization process by comparing different 
grayscale intensity distributions between the object part 
and its shadow part cancels out the shadow, as shown in 
Fig. 2(a). On the other hand, the image binarization 
process considering only the grayscale intensity 

distribution between an object part and its background part 
detects the object including its shadow, as shown in Fig. 
2(b), which causes an object location error for automated 
assembling robots. 

Two separated groups of grayscale distributions within 
the same image frame, which shows an object with its 
background, represent an object region and its background 
region. The proposed image binarization stage decides the 
probability of the existence [9] of an object from the 
grayscale histogram, which shows the distinctive 
distribution between an object and its background. 

During the image binarization process, the grayscale 
intensity threshold value, which separates an object from 
its background and shadow, is set. The region-of-interest is 
then limited to the pixels of an object in the final binary 
image frame. In this paper, the object parts in the binary 
image are the only pixels to be considered for the next 
stage, which is the image labeling process. 

2.2 Image Labeling with Noise Pixel 
Cancelling 

To distinguish the objects from their backgrounds, this 
paper proposes an algorithm that determines the 
connectivity among objects with multiple pixel searching, 
memory space management and gray-scale intensity 
correction by detecting the connected components among 
pixels during the discontinuous iterative pixel searching 
stage. 

The pixels in each image are represented by m × n 
format, where m and n are integers. To obtain information 
on the image used in the experiment, there should be a 
pixel searching stage. The pixel search aims to 
discriminate the meaningful image information from 
meaningless image information, i.e., background image. 
The background image for a robot vision system includes 
images of an empty conveyor-belt system, floor surfaces 
with no obstacles, or empty walls. For outdoor use of the 
robot vision system, a uniform sky is the background 
image for the proposed algorithm, and clouds provide the 
meaningful image information to recognize as an object. 

2.2.1 Pixel Searching Stage 
For a 640 × 480 binary image, which is used in this 

experiment, the pixel search is started from the left most 
and the uppermost pixel. An algorithm for pixel searching 
varies the pixel searching indices, i, and j. Whole pixels 
with 255-level of grayscale intensity, which are within the 
640 × 480 binary image, are the pixels to be detected for 
the image labeling process. Only the objects in an image 

Fig. 1. Flowchart of the proposed algorithm. 

  
                 (a)                                                (b) 

Fig. 2. Shadowed area of an object (a) Binary image 
with shadow removal, (b) The shadowed region is 
included as an object during image binarization. 
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frame, which are shown in white color, are considered 
during the pixel searching stage. 

The proposed algorithm uses the pixel searching 
indices, i and j. The variation of index j first searches each 
row, and index i searches each column. In the proposed 
algorithm, index j has its maximum value as much as the 
width information of the loaded binary image, and index i 
has its maximum value as much as the height information 
of the loaded binary image. The width of the loaded image 
is related to a horizontal element in the searching pixels 
within the loaded binary image. 

The memory space for 640 columns in the image frame 
used in this experiment is initialized as 641 arrays before 
the pixel searching part of the image labeling algorithm. 
The last array, which is the 641st array, is for preparing to 
be initialized as the first array in the next row. The 
searching index, i, is increased as the searching range is 
shifted to the next row. 

The memory space for 480 rows is also guaranteed by 
the form of an array in the proposed algorithm. The array 
for the entire rows in the loaded binary image constitutes a 
two-dimensional array with the array for columns of the 
loaded binary image. The two-dimensional array in a 640 
× 480 binary image, which has two memory spaces for 640 
columns and 480 rows, generates memory overflow 
phenomenon in the proposed algorithm. As a solution of 
overflow in the memory spaces, the number of the memory 
arrays only should be limited to several rows, and the 
memory arrays are reset when all allocated memory spaces 
are full. The overflow prevention part of the proposed 
algorithm utilizes an integer variable with its range of zero 
to three. The 480 memory spaces in the array formats for 
480 rows become equivalent to the memory space with 4 
memory spaces. 

The integer variable used for overflow prevention is 
initially set to zero. After completing the search of the first 
row, the integer value is increased by one. The integer 
value becomes 1 for the first row of the loaded binary 
image, 2 for the second row, and 3 for the third row. After 
the third iteration for searching the three rows, the pixel 
searching process for the fourth row should change the 
integer value to 1 because the remainder of 4 over 3 is 1. 
The integer value for the fourth iteration for searching the 
pixels in the fourth row then becomes 1. 

Because a 640 × 480 binary image is used, this paper 
proposes searching the pixels of the first row with 640 
iterations. The pixels in the first row with 640 columns are 
searched to count the pixels with a 255-level of grayscale 
intensity, which represent object part pixels in the binary 
image. The search index, j, is increased each time when the 
current pixel is changed to the next pixel within the same 
row. 

2.2.2 Image Labeling Stage 
The detection of two or more neighboring 255-level of 

grayscale intensity pixels within the same 3 × 3 pixel 
searching window means the existence of an object. The 
pixel searching stage checks the connectivity within the 
window and finds the connected component pixels to 
detect the objects. After the pixel searching stage for 

object detection, the proposed algorithm is prepared for the 
image labeling stage. The labeling scheme distinguishes 
each detected object with different grayscale intensities. 
Different labeling index numbers are used to distinguish 
the separated objects in different grayscale intensities, as 
shown in Fig. 3(b). 

The iteration of the sliding process of pixel searching 
window ensures that a pixel has its neighboring 255-level 
of grayscale intensity pixel, and the neighboring pixel has 
at least another neighboring pixel with the same grayscale 
intensity. Finding the neighboring 255-level of grayscale 
intensity pixels determines the existence of an object. 
When the objects are detected from a binary image, the 
proposed algorithm is prepared for a grayscale intensity 
correction to represent the connected pixel components. 

Fig. 3(a) shows the pixel search by indexing each pixel. 
Because two objects were detected, they are in different 
pixel colors. In Fig. 3(b), two objects are closer to each 
other, and the closest case is shown in Fig. 3(c). Until the 
second row of an image frame, label indexing remains 
same with the former cases, showing no grayscale intensity 
correction. 

The center pixel of the labeling window shown in the 
red box in Fig. 3(c) detects a pre-labeled object. When a 3 
× 3 pixel searching window is at the pixel connecting 
separate objects, grayscale intensity representing each 
object should be corrected to represent that both objects 
are parts of the same object. Therefore, the current 
component is re-labeled as same as the pre-labeled object, 
as shown in Fig. 3(d). In Fig. 3(e), the labeling indices 
became the same because they are connected components. 
The same labeling indices represent the same level of 
grayscale intensity. 

A 3 × 3 pixel searching window, which is a red box 

Fig. 3. Grayscale intensity correction of the connected 
components (a) One object is labeled in black, and the 
other object is labeled in gray, (b) Another image 
labeling case for two separate objects, (c) Two objects 
are labeled separately until the yellow arrow reaches 
the red square, (d) Because the connected 
components are detected in the red square, all the 
objects receive the same label. The blue arrow shows 
that the connected component finding algorithm with 
re-labeling continues for the next pixels, (e) Another 
example of an object shows similar procedure as an 
object in (d). 
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shown in Figs. 3(c) and (d), is applied to all pixels that are 
represented as 255-level of grayscale intensity pixels from 
the initial binary image. Sliding the 3 × 3 window among 
the pixels in the loaded binary image frame is equivalent to 
a 255-level of grayscale intensity pixel detection process in 
the image frame. 

Table 1 lists the labeling process time comparison for 
the Lena image. The proposed algorithm required 7ms, and 
the result is shown in Fig. 4. The image does not fit the 
exact model for robot vision applications due to the 
various shapes of thin or thick objects in the Lena image. 

Lumina’s two-scan algorithm [10] employs a table for 
storing labeling data for each row of an image. Shirai [11] 
proposed a two-scan scheme depending on the labeled area. 
The hybrid algorithm [12] uses a one-dimensional table 
with a four times raster-scan for each pixel. The algorithm 
in [13] applies the contour tracing scheme of the contour-
point pixels. Because contour tracing labeling accesses 
each pixel in an irregular manner, the algorithm does not 
suit pipelining and parallel processing [7] for hardware 
verification. The proposed algorithm achieves fast 
hardware implementation through a sequential search of 
the neighboring pixels in a two-scan scheme. 

2.2.3 Noise Cancellation Stage 
The reflection or shadow within each object in an 

image frame is likely to generate visible artifacts in the 
binary images [14]. In Fig. 5(b), the noise elements mostly 
on the lower side of an experimental object are labeled as 
objects. On the other hand, Fig. 5(a) shows that noise pixel 
elements were removed. The object used in Fig. 5 is a 
metal object so that uniform color detection from a camera 
is almost impossible due to the range of light reflections 
against the source of light. For automated electronics 
assembling robots, most working parts to be assembled are 
chips, which are non-reflective except for small 

conducting area that is surrounded by a non-reflective part. 
The labeling index values, i and j, used for searching 

during the connected component labeling process, counts 
both the connected pixels in the objects parts and a single 
pixel noise. Whenever a binary image shows a single in a 
255-level grayscale intensity pixel noise, the proposed 
algorithm detects it as noise to reconsider it as a 
background from sliding a 3x3 pixel searching window, 
which is a red box shown in Figs. 3(c) and (d). For a noise 
compartment, the noise pixel in 255-levels of grayscale 
intensity is surrounded by 0-levels of grayscale intensity 
pixel within the same 3x3 pixel search window. For this 
case, the algorithm changes the grayscale intensity of an 
artifact as 0-intensity to regard as a background. 

2.3 Relative Depth Evaluation from 
Pattern Projection 

Structured light system projects a user-defined pattern 
with a paired image sensor. Projecting a pattern is 
achieved using an optical beam projector, and pattern 
sensing is achieved by capturing an image frame from a 
camera. The camera captures objects and background that 
are reflecting the projected pattern. The pattern reflected 
from an object is easily distorted due to the different 
reflecting angle from the background. The distorted pattern 
only occurs on the surfaces and edges of an object. The 
large surface area of an object, which has the same light 
reflecting angle as the background surface, reflects the 
same or similar pattern as the pattern reflected in the 
background. On the other hand, the surrounding edges of 
the surface distort the projected pattern, and help detect the 
change in depth of an image frame. The depth evaluation 
process has cues, such as pattern distortion from the object 
surfaces and edges. 

Each pixel in the projector is manipulated by 
controlling the optical reflective mirror, which is arranged 
for each pixel. This light reflecting scheme is called 
Digital Light Processing (DLP). Turning on the signal 
simply reflects light to the light pixel, and turning off 
signal cuts off light for the dark pixel. Each mirror is 
turned on and off ten thousand times in one second [15]. 
The ratio between the turning on and off a mirror for a 
pixel determines the grayscale intensity of the pixel. To 
project the color patterns, light passes the color filter. 

The proposed structured light pattern is based on a 
binary bit; a black color pattern for signal ‘0’ and a white 
color pattern for signal ‘1’. The signals for a binary bit 
pattern are well suited for hardware implementation due to 
the assigning of just two more variables. Moreover, both 

Table 1. Comparison of The Proposed Labeling 
Schemes. 

Labeling Scheme Operation Time 
[ms] 

Lumina [10] 174.2 

Shirai [11] 38.8 

Hybrid [12] 15.1 

The proposed labeling scheme 7 

Contour tracing labeling [13] 2.2 

 

 

Fig. 4. Labeled image of Lena from our connected-
component labeling scheme 

 

                  (a)                                                 (b) 

Fig. 5. Grayscale labeling with noise pixel cancelling 
(a) Noise is cancelled during image labeling, (b): A 
labeled object with noise pixels. 

 



Park et al.: Depth Evaluation from Pattern Projection Optimized for Automated Electronics Assembling Robots   

 

200

the software algorithm and hardware implementation of 
the proposed structured light pattern with connected 
component labeling process guarantees high-speed 
operation considering the automated electronics 
assembling robots. The automated robots are deployed for 
quicker operation and a more intensive laboring time than 
humans can do. 

Considering the vision system for automated 
electronics assembling robot applications, the system 
should offer information on which objects to be picked up 
first for the robot. Assigning an object picking order is to 
reduce the interference among stacked composites of 
electronics. The electronics composite, positioned on top 
of the other composites, has the greatest depth causing the 
highest pattern distortion. This paper aims to determine 
which objects have the greatest depth to order an 
automated electronics assembling robot to determine 
which electronics parts to pick up first by its arm. 

2.3.1 Experimental Set Preparation 
To determine which electronics composites are located 

on top of the stacked objects, this paper proposes the 
utilization of relative depth information among the objects 
from the projecting pattern beam to those stacked objects. 
Fig. 6 shows the pattern image used to project the pattern 
beam. The pattern is iterating black and white stripes. 

The projector with DLP technology reflects the source 
light pixel-by-pixel from its micro-mirror device. In the 
image of projected beam, shown in Fig. 7, the white stripe 
patterns shows edge shapes of the micro-mirror device. 

Each square is equivalent to one pixel, and the white 
stripe patterns are equivalent to 255-level of grayscale 
intensity. The white stripes in Fig. 7 are the result of 
source light reflection with a color frequency shift by the 
color filter. Because the light source is close to the white 
color-temperature, the white stripes show less color 

frequency shift than the black stripes. Therefore, the white 
stripes are brighter than the black stripes. 

A camera captures an image frame containing an object 
and its background surface with a projected pattern image. 
Because the locations of a projector, object, and 
background screen are fixed, the location of a camera 
influences the depth evaluation process. The depth 
information is processed by the amount of distortion of the 
reflected pattern from each surface of an object. Varying 
the location of a camera reduces the efficiency of the 
structured light system. A camera captures a reference 
image frame, which is Fig. 7, for the current experiment. 

Electronic chips are set together as shown in Fig. 8(a), 
which considers the electronics composites condition of 
automated electronics assembling robots. The background 
image of Fig. 8(a) is just a screen from the experimental 
set, and this screen will reflect a projected pattern from a 
beam projector. As the location of a beam projector and a 
camera should differ to maximize the disparity between 
them, the camera was located on the left side of the 
projector so that the objects in Fig. 8(a) would appear like 
they are located on the right side of the image frame. 

2.3.2 Image Labeling 
The objects are labeled in grayscale intensities, as 

shown in Fig. 8(b). Because the surrounding light during 
an image frame capturing process effects the grayscale 
intensity distribution, the dark part of the largest object in 
Fig. 8(a) is shown in several parts as Fig. 8(b). On the 
other hand, the grayscale labeling is used for the pre-

 

 

Fig. 6. Original pattern image for pattern projection.
 
 

 

Fig. 7. Pattern projection image frame captured by a
camera. 

 

  

Fig. 8. Depth evaluation procedure using structured 
light for automated assembling robots (a) Experimental 
objects are stacked together, (b): Image labeling result 
of (a), (c) Pattern projection, (d) Binarized image of (c),
(e) The greatest depth region is shown in the gray 
rectangular box, (f): Contour modeling for the object
with the greatest depth. 
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detection of a structured light system to determine the 
location with the highest disparity between the beam 
projector and a camera in the structured light system. 

2.3.3 Pattern Projection 
Pattern projection to a background screen is captured as 

another image frame from a camera used for the structured 
light system, which is shown in Fig. 8(c). Possible pattern 
distortion occurs when black stripes are overlapped at the 
position of the white stripes. The objects cause pattern 
distortion because of the light reflection angle between 
each surface of an object and uniform standstill 
background screen. 

The gray scale distribution among objects, black stripe 
pattern, and white stripe pattern differ from each other. 
Such distinctive grayscale distribution is used for the 
image binarization stage. Image binarization is once again 
used after the pattern projection to reduce the 
computational load. Fig. 8(d) presents the binary image of 
Fig. 8(c). 

2.4 Relative Depth Evaluation Stage 
Fig. 8(c) shows that the reflective pattern shown in the 

background part differs from the reflective pattern shown 
in the objects part. A possible pattern distortion occurs 
when black stripes are overlapped at the position of the 
white stripes. The objects cause pattern distortion because 
of the light reflection angle between each surface of an 
object and uniform standstill background screen. The 
maximum pattern distortion occurs when the angle 
between the pattern projection and pattern reflection from 
an object surface becomes 45°. An image frame, which 
shows an object that reflects a distorted pattern, as shown 
in Fig. 9(b), is captured by a camera to determine the 
location with high disparity. 

Fig. 9 shows a binarized image set of the reference 
pattern and distorted pattern. Because image binarization 
re-assigns a 2-bit grayscale intensity for both the reference 
and pattern distortion image, the computational load for 
image processing becomes lower and achieves faster 
operation. The proposed relative depth evaluation stage 
utilizes the input images, as shown in Figs. 9(a) and (b), to 
determine where the highest depth region is. 

The black stripe pattern regions in the input image set, 
as shown in Fig. 9, are the main regions of interest in the 
proposed depth evaluation stage. The other regions with 
white stripes in Fig. 9 do not need to be considered for the 
depth evaluation because the white stripe pattern acts as a 
background image. 

Considering only the regions of interest during the 
depth evaluation lowers the computational load. For the 
reference and pattern distortion image frames, the location 
of the black and white stripes remains still with the 
exception of the pattern distortion and objects region. The 
pixels showing pattern distortion are used for the depth 
evaluation stage. The resulting image is presented in Fig. 
8(e), which shows a rectangular box that represents the 
highest depth region. The required computational time was 
31ms, as shown at the 5th row in Fig. 10. 

Each row of the image set of Fig. 9 was compared line-

by-line. The 0-level of the grayscale intensity regions in 
Fig. 9(a) were compared directly with those of Fig. 9(b). 
Because the image set is a binary image, the grayscale 
intensity of the distorted black stripe patterns in Fig. 8(c) 
becomes a 255-level grayscale intensity when binarized. 
For each row of images in Fig. 9, the number of pixels 
showing opposite grayscale intensity is counted and saved 
in an array in this algorithm. The row showing the highest 
number of pixels showing the opposite grayscale intensity 
is noted as a row for an object with the greatest depth. The 
row showing the greatest depth is then saved as an integer-
type variable. 

Every column of Fig. 9(a) is compared with the same 
location of the column of Fig. 9(b). Only the black stripe 
pattern in Figs. 9(a) and (b) is similar to the row-range 
depth evaluation. The black pattern of Fig. 9(a) was 
compared directly with the same pixel location in Fig. 9(b). 
The number of pixels showing the opposite grayscale 
intensity between Figs. 9(a) and (b) are counted column-
by-column. The maximum number of pixels showing the 
opposite grayscale intensity for each column is saved in 
the form of a variable. 

An evaluation of the range of pixels representing an 
object with the greatest depth involves searching each row 
and column one more time after counting the pixels 
showing pattern distortion. Because the number of pixels 
showing pattern distortion is evaluated for each row and 
column, the second iteration process for searching each 
row and column aims to define the precise location of 
pixels with the highest pattern distortion. The process 
compares each row and column to determine the maximum 
value of the pixels representing pattern distortion in the 
binarized image of the pattern reflection by objects. 

An object causing the maximum pattern distortion 
becomes the target range of the highest depth region. 
While searching for the maximum row and column 
showing the greatest depth, those rows and columns 
become flag indices, showing that they would be included 
in the range of the highest depth information. The flagged 
rows were compared with the neighboring rows, and the 
flagged columns were compared with neighboring 
columns. The discovered range of high depth information 
was then marked in rectangular form, as shown in Fig. 8(e). 

Fig. 10 shows the simulation result. The greatest depth 
region is determined in the range of pixel coordinates for 

                (a)                                              (b) 

Fig. 9. Binarized image set of reference pattern 
reflection and pattern distortion (a) A binary image 
result for reference pattern projection, (b) A binary 
image for pattern projection onto our experimental 
objects. 
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both the row and column. The flag index number for the 
row was 42, which means that the maximum pattern 
distortion region that showed 42 pixels in the 24th row 
changed to the opposite grayscale intensity due to pattern 
distortion. The rectangular area in Fig. 8(e) was initially a 
black stripe region, but was substituted with a white stripe 
region, where pattern distortion occurred. 

2.5 Contour Generation of an Object with 
The Greatest Depth 

The labeled image frame for the objects, which is 
shown in Fig. 8(b), becomes an input for a grayscale 
intensity evaluation of the range of pixels with the 
maximum pattern distortion. The maximum pattern 
distortion shows the area of the greatest depth among 
stacked objects. 

The grayscale intensity values within the maximum 
pattern distortion area are then saved in array format in the 
proposed algorithm, and compared with each other to 
determine their brightest grayscale color. The brightest 
grayscale intensity within the maximum pattern distortion 
area was 56, as shown at the last row in Fig. 8. The pixels 
in the labeled image frame, which is shown in Fig. 8(b), 
are searched to select the pixels in same grayscale intensity 
with the brightest grayscale intensity, which is 56 in these 
experimental results, and are located in the maximum 
pattern distortion area. 

The pixels in the same grayscale intensity with the 
labeled object causing the maximum pattern distortion are 
represented in a new output image frame, as shown in Fig. 
8(f). The contour shape in Fig. 8(f) was defined as (125, 
125, 125) considering the black-color background. 

Because every object is captured from a camera, a 
grayscale intensity difference naturally occurs among 
pixels within the same object. Pixels showing the same 
grayscale intensity that which is within the object contour 
boundary generates a contour line. For example, direct 
light reflection of an object appears like a contour line 
representing light reflection. 

As an automated electronics assembling robot equips a 
laser-proximity sensor near the arm of the robot, the robot 
receives locational information in the format of a contour 
line. The object locational information is defined as the 
pixel coordinates. The robot then receives object contour 
shape information to grab the target object. 

An object depth evaluation requires pattern projection, 
and an analysis distorted pattern reflection. The pattern 
used for pattern projection is equivalent to structured light. 
Various structured light applications were compared in 

[16]. An additional camera is needed to match the 
correspondence in stereo vision, and an additional 
projector is needed for gesture recognition. Stereo vision 
has high computation, and gesture recognition requires 
more patterns [16]. 

Shape reconstruction [17] requires several image 
frames. The three image frames were used for cylindrical 
shape reconstruction in reference [17]. The algorithm 
requires just one image frame, as shown in Fig. 11(b), for 
shape reconstruction. The reconstructed shape is shown in 
Fig. 11(d), which shows a seamless contour object shape. 
The depth evaluation result is the rectangular form in Fig. 
11(c) from pattern distortion analysis, which requires 32ms. 

Table 2 lists the proposed structured light system for 
robot vision application aiming fast processing of depth 
evaluation due to the minimum number of equipment 
requirement. The experimental equipment for robot vision 
application was composed of one set of an image frame, 
camera and a projector. 

Fig. 10. Simulation result of the relative depth
evaluation stage. 

 

Fig. 11. Edge contour reconstruction of a cylinder-
shaped object (a) Experimental object with a reflective 
cylindrical shape, (b) Pattern projection, (c) Depth 
evaluation result in the binary image frame of (b), (d) 
Contour modeling for shape reconstruction. 

 
Table 2. Structured Light Applications. 

Application 
 The Number 

of Image 
Frame Sets 

 The Number 
of Cameras 

 The Number 
of Projectors

Robot vision 
(proposed) 1 1 1 

Shape 
reconstruction 

[17] 
Multiple 1 1 

Stereo vision [16] 1 or more 2 1 
Gesture 

recognition [16] 1 or more 1 2 
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3. Conclusion 

Pattern projection from a projector is fixed 
perpendicular to the background screen, and different 
pattern reflections from various surfaces of objects 
generate pattern distortion. An analysis of a pattern 
distortion image frame, which is captured by the camera, 
results in depth evaluation. An automated assembling 
robot should be informed of an object with the greatest 
depth to pick up the object first so that the arm of the robot 
has less chance of harming objects, which are stacked at a 
lower depth. 

The depth evaluation process with the experimental 
objects required 31 ms for Fig. 8(e), and 32 ms for Fig. 
11(c). Because a 30-frame-per-second camera captures an 
image frame in every 33.33 ms, the proposed depth 
evaluation algorithm was optimized for an automated 
assembling robot using a camera. Until the camera 
captures the next image frame, the depth evaluation stage 
is performed for the current image frame and becomes 
ready for the next image frame. 
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