• Title/Summary/Keyword: Picard operator

Search Result 10, Processing Time 0.02 seconds

TRIGONOMETRIC GENERATED RATE OF CONVERGENCE OF SMOOTH PICARD SINGULAR INTEGRAL OPERATORS

  • GEORGE A. ANASTASSIOU
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.407-414
    • /
    • 2023
  • In this article we continue the study of smooth Picard singular integral operators that started in [2], see there chapters 10-14. This time the foundation of our research is a trigonometric Taylor's formula. We establish the convergence of our operators to the unit operator with rates via Jackson type inequalities engaging the first modulus of continuity. Of interest here is a residual appearing term. Note that our operators are not positive. Our results are pointwise and uniform.

A NOTE ON APPROXIMATION OF SOLUTIONS OF A K-POSITIVE DEFINITE OPERATOR EQUATIONS

  • Osilike, M.O.;Udomene, A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.231-236
    • /
    • 2001
  • In this note we construct a sequence of Picard iterates suitable for the approximation of solutions of K-positive definite operator equations in arbitrary real Banach spaces. Explicit error estimate is obtained and convergence is shown to be as fast as a geometric progression.

  • PDF

A DIFFERENTIAL EQUATION WITH DELAY FROM BIOLOGY

  • Otrocol, Diana
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1037-1048
    • /
    • 2008
  • The purpose of this paper is to present a differential equation with delay from biological excitable medium. Existence, uniqueness and data dependence (monotony, continuity, differentiability with respect to parameter) results for the solution of the Cauchy problem of biological excitable medium are obtained using weakly Picard operator theory.

  • PDF

EXISTENCE OF PICARD-JUNGCK OPERATOR USING CG-SIMULATION FUNCTIONS IN GENERALIZED METRIC SPACES

  • CHANDOK, SUMIT
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.481-489
    • /
    • 2019
  • In this manuscript, we provide some new results with short proofs for the existence of Picard-Jungck operators in the framework of generalized metric spaces using $C_G$-simulation functions. An example is also provided to illustrate the usability of the results.

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES

  • Jun Liu;Haonan Xia
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1057-1072
    • /
    • 2023
  • Let 𝜑 : ℝn × [0, ∞) → [0, ∞) be a growth function and H𝜑(ℝn) the Musielak-Orlicz Hardy space defined via the non-tangential grand maximal function. A general summability method, the so-called 𝜃-summability is considered for multi-dimensional Fourier transforms in H𝜑(ℝn). Precisely, with some assumptions on 𝜃, the authors first prove that the maximal operator of the 𝜃-means is bounded from H𝜑(ℝn) to L𝜑(ℝn). As consequences, some norm and almost everywhere convergence results of the 𝜃-means, which generalizes the well-known Lebesgue's theorem, are then obtained. Finally, the corresponding conclusions of some specific summability methods, such as Bochner-Riesz, Weierstrass and Picard-Bessel summations, are also presented.

STABILITY IN THE α-NORM FOR SOME STOCHASTIC PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Diop, Mamadou Abdoul;Ezzinbi, Khalil;Lo, Modou
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.149-167
    • /
    • 2019
  • In this work, we study the existence, uniqueness and stability in the ${\alpha}$-norm of solutions for some stochastic partial functional integrodifferential equations. We suppose that the linear part has an analytic resolvent operator in the sense given in Grimmer [8] and the nonlinear part satisfies a $H{\ddot{o}}lder$ type condition with respect to the ${\alpha}$-norm associated to the linear part. Firstly, we study the existence of the mild solutions. Secondly, we study the exponential stability in pth moment (p > 2). Our results are illustrated by an example. This work extends many previous results on stochastic partial functional differential equations.

NUMERICAL SOLUTIONS FOR ONE AND TWO DIMENSIONAL NONLINEAR PROBLEMS RELATED TO DISPERSION MANAGED SOLITONS

  • Kang, Younghoon;Lee, Eunjung;Lee, Young-Ran
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.835-847
    • /
    • 2021
  • We study behavior of numerical solutions for a nonlinear eigenvalue problem on ℝn that is reduced from a dispersion managed nonlinear Schrödinger equation. The solution operator of the free Schrödinger equation in the eigenvalue problem is implemented via the finite difference scheme, and the primary nonlinear eigenvalue problem is numerically solved via Picard iteration. Through numerical simulations, the results known only theoretically, for example the number of eigenpairs for one dimensional problem, are verified. Furthermore several new characteristics of the eigenpairs, including the existence of eigenpairs inherent in zero average dispersion two dimensional problem, are observed and analyzed.