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TRIGONOMETRIC GENERATED RATE OF CONVERGENCE

OF SMOOTH PICARD SINGULAR INTEGRAL OPERATORS

GEORGE A. ANASTASSIOU

Abstract. In this article we continue the study of smooth Picard singular
integral operators that started in [2], see there chapters 10-14. This time

the foundation of our research is a trigonometric Taylor’s formula. We
establish the convergence of our operators to the unit operator with rates

via Jackson type inequalities engaging the first modulus of continuity. Of

interest here is a residual appearing term. Note that our operators are not
positive. Our results are pointwise and uniform.
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1. Introduction

We are motivated by [1], [2] chapters 10-14, and [3], [4]. We use a trigono-
metric new Taylor formula from [3], see also [4]. Here we consider some very
general operators, the smooth Picard singular integral operators over the real
line and we study further their convergencnce properties quantitatively. We es-
tablish related inequalities involving the first modulus of continuity with respect
to uniform norm and the estimates are pointwise and uniform. We provide a
detailed proof.

2. Results

By [3], [4], for f ∈ C2 (R) and a, x ∈ R, we have by trigonometric Taylor
formula

f (x)− f (a) = f ′ (a) sin (x− a) + 2f ′′ (a) sin2
(
x− a

2

)
+ (1)∫ x

a

[(f ′′ (t) + f (t))− (f ′′ (a) + f (a))] sin (x− t) dt.
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For r ∈ N and n ∈ Z+, we set

αj :=


(−1)

r−j

(
r
j

)
j−n, j = 1, ..., r.

1−
r∑

j=1

(−1)
r−j

(
r
j

)
j−n, j = 0,

(2)

that is
r∑

j=0

αj = 1. (3)

CU (R) denotes the space of uniformly continuous functions on R, and CB (R)
denotes the space of bounded continuous functions on R.

Here we consider both f, f ′′ ∈ CU (R) ∪ CB (R).
For x ∈ R, ξ > 0 we consider the Lebesgue integrals, so called smooth Picard

operators

Pr,ξ (f, x) =
1

2ξ

∫ ∞

−∞

 r∑
j=0

αjf (x+ jt)

 e−
|t|
ξ dt, (4)

see [1]; Pr,ξ are not in general positive operators, see [2].
We notice by

1

2ξ

∫ ∞

−∞
e−

|t|
ξ dt = 1, (5)

that
Pr,ξ (c, x) = c, where c is a constant, (6)

and

Pr,ξ (f, x)− f (x) =
1

2ξ

 r∑
j=0

αj

∫ ∞

−∞
(f (x+ jt)− f (x)) e−

|t|
ξ dt

 . (7)

Denote by
ω1 (f, δ) := sup

x,y∈R
|x−y|≤δ

|f (x)− f (y)| , δ > 0, (8)

the first modulus of continuity of f .
We set

∆ (x) := Pr,ξ (f, x)− f (x)− f ′′ (x)

 r∑
j=0

αjj
2

j2ξ2 + 1

 ξ2; ξ > 0, x ∈ R. (9)

We present our uniform approximation result.

Theorem 2.1. It holds

|∆(x)| ≤ ∥∆(x)∥∞ ≤ ξ2ω1 (f
′′ + f, ξ)

 r∑
j=0

|αj | j2 (j + 1)

 =: A; ξ > 0, x ∈ R.

(10)
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And ∥∆(x)∥∞ → 0, as ξ → 0. If f ′′ (x) = 0, then |Pr,ξ (f, x)− f (x)| ≤ A.

Proof. By (1) we get that

f (x+ jt)− f (x) = f ′ (x) sin (jt) + 2f ′′ (x) sin2
(
jt

2

)
+

∫ x+jt

x

[(f ′′ (s) + f (s))− (f ′′ (x) + f (x))] sin (x+ jt− s) ds, (11)

or better

f (x+ jt)− f (x) = f ′ (x) sin (jt) + 2f ′′ (x) sin2
(
jt

2

)
+

∫ jt

0

[(f ′′ (x+ z) + f (x+ z))− (f ′′ (x) + f (x))] sin (jt− z) dz. (12)

Furthermore, it holds
r∑

j=0

αj [f (x+ jt)− f (x)] =

f ′ (x)

r∑
j=0

αj sin (jt) + 2f ′′ (x)

r∑
j=0

αj sin
2

(
jt

2

)
+

r∑
j=0

αj

∫ jt

0

[(f ′′ (x+ z) + f (x+ z))− (f ′′ (x) + f (x))] sin (jt− z) dz, (13)

or better
r∑

j=0

αj [f (x+ jt)− f (x)] =

f ′ (x)

r∑
j=0

αj sin (jt) + 2f ′′ (x)

r∑
j=0

αj sin
2

(
jt

2

)
+

r∑
j=0

αjj

∫ t

0

[(f ′′ (x+ jw) + f (x+ jw))− (f ′′ (x) + f (x))] sin j (t− w) dw.

(14)
Call

R := R (t)

:=

r∑
j=0

αjj

∫ t

0

[(f ′′ (x+ jw) + f (x+ jw))− (f ′′ (x) + f (x))] sin j (t− w) dw,

∀ t ∈ R. (15)

Then, for t ≥ 0,

|R| ≤
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r∑
j=0

|αj | j
∫ t

0

|(f ′′ (x+ jw) + f (x+ jw))− (f ′′ (x) + f (x))| |sin j (t− w)| dw ≤

r∑
j=0

|αj | j
∫ t

0

ω1 (f
′′ + f, jw) j (t− w) dw =

(ξ > 0)
r∑

j=0

|αj | j2
∫ t

0

ω1

(
f ′′ + f,

ξjw

ξ

)
(t− w) dw ≤ (16)

r∑
j=0

|αj | j2ω1 (f
′′ + f, ξ)

∫ t

0

(
1 +

jw

ξ

)
(t− w) dw =

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[∫ t

0

(t− w) dw +
j

ξ

∫ t

0

w2−1 (t− w)
2−1

dw

]
=

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
 (t− w)

2

2

∣∣∣∣∣
0

t

+
j

ξ

1

6
t3

 =

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
t2

2
+ j

t3

6ξ

]
.

Hence (t ≥ 0)

|R| ≤ ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
t2

2
+ j

t3

6ξ

]
. (17)

Let now t < 0, then

|R| ≤
r∑

j=0

|αj | j
∣∣∣∣∫ t

0

[(f ′′ (x+ jw) + f (x+ jw))− (f ′′ (x) + f (x))] sin j (t− w) dw

∣∣∣∣ ≤
r∑

j=0

|αj | j
∫ 0

t

|(f ′′ (x+ jw) + f (x+ jw))− (f ′′ (x) + f (x))| |sin j (t− w)| dw ≤

r∑
j=0

|αj | j
∫ 0

t

ω1 (f
′′ + f,−jw) j (w − t) dw =

r∑
j=0

|αj | j
∫ 0

t

ω1

(
f ′′ + f,−jw

ξ

ξ

)
j (w − t) dw =

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
∫ 0

t

(
1− j

ξ
w

)
(w − t) dw = (18)
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ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[∫ 0

t

(w − t) dw +
j

ξ

∫ 0

t

(0− w)
2−1

(w − t)
2−1

dw

]
=

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
 (w − t)

2

2

∣∣∣∣∣
0

t

+
j

ξ

1

6
(−t)

3

 =

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
t2

2
+ j

(−t)
3

6ξ

]
.

We found that (t < 0)

|R| ≤ ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
t2

2
+ j

(−t)
3

6ξ

]
. (19)

Consequently, for t ∈ R, we obtain

|R (t)| ≤ ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
t2

2
+

j

6ξ
|t|3

]
, ξ > 0. (20)

So, we have

r∑
j=0

αj [f (x+ jt)− f (x)]−f ′ (x)

r∑
j=0

αj sin (jt)−2f ′′ (x)

r∑
j=0

αj sin
2

(
jt

2

)
= R (t) .

(21)
Therefore, it holds

∆1 (x) := Pr,ξ (f, x)− f (x)− f ′ (x)

r∑
j=0

αj
1

2ξ

(∫ ∞

−∞
sin (jt) e−

|t|
ξ dt

)

−2f ′′ (x)

r∑
j=0

αj
1

2ξ

(∫ ∞

−∞
sin2

(
jt

2

)
e−

|t|
ξ dt

)
= (22)

1

2ξ

∫ ∞

−∞
R (t) e−

|t|
ξ dt.

Hence we get

|∆1 (x)| ≤
1

2ξ

∫ ∞

−∞
|R (t)| e−

|t|
ξ dt ≤

1

2ξ

∫ ∞

−∞

ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
t2

2
+

j

6ξ
|t|3

] e−
|t|
ξ dt (23)

(we use ∫ ∞

−∞
tke−

|t|
ξ dt =

{
0, k odd,
2k!ξk+1, k even

(24)



412 George A. Anastassiou

)

= ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
1

2ξ

∫ ∞

−∞

[
t2

2
+

j

6ξ
|t|3

]
e−

|t|
ξ dt

= ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
1

4ξ

∫ ∞

−∞
t2e−

|t|
ξ dt+

j

12ξ2

∫ ∞

−∞
|t|3 e−

|t|
ξ dt

]
(25)

= ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
1

4ξ
4ξ3 +

jξ4

6ξ2

∫ ∞

0

(
t

ξ

)3

e−
|t|
ξ d

t

ξ

]

= ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
ξ2 + ξ2

j

6

∫ ∞

0

z3e−zdz

]

= ω1 (f
′′ + f, ξ)

r∑
j=0

|αj | j2
[
ξ2 + ξ2

j

6
6

]
= ω1 (f

′′ + f, ξ)

r∑
j=0

|αj | j2
[
ξ2 + ξ2j

]

= ω1 (f
′′ + f, ξ) ξ2

 r∑
j=0

|αj | j2 (1 + j)

 .

We have proved that

|∆1 (x)| ≤ ξ2ω1 (f
′′ + f, ξ)

 r∑
j=0

|αj | j2 (j + 1)

 ; ξ > 0, x ∈ R. (26)

Notice that ∆1 (x) → 0, as ξ → 0.
Next we simplify left hand side (22).
We observe that∫ ∞

−∞
sin (jt) e−

|t|
ξ dt =

∫ 0

−∞
sin (jt) e−

|t|
ξ dt+

∫ ∞

0

sin (jt) e−
|t|
ξ dt. (27)

Notice −∞ ≤ t ≤ 0 ⇒ ∞ ≥ −t ≥ 0. So that

−
∫ 0

−∞
sin (j (− (−t))) e−

|t|
ξ d (−t) = −

∫ 0

−∞
(− sin (j (−t))) e−

|t|
ξ d (−t) = (28)

∫ 0

−∞
sin j (−t) e−

|t|
ξ d (−t) =

∫ 0

∞
sin j (t) e−

|t|
ξ dt = −

∫ ∞

0

sin (jt) e−
|t|
ξ dt.

Therefore, it is ∫ ∞

−∞
sin (jt) e−

|t|
ξ dt = 0, j = 0, 1, ..., r. (29)

Furthermore, we have that∫ ∞

−∞
sin2

(
jt

2

)
e−

|t|
ξ dt = 2

∫ ∞

0

sin2
(
jt

2

)
e−

t
ξ dt, j = 0, 1, ..., r. (30)
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The last follows by∫ 0

−∞
sin2

(
jt

2

)
e−

|t|
ξ dt = −

∫ 0

−∞

(
− sin

(
j (−t)

2

))2

e−
|−t|
ξ d (−t)

(z=−t)
= (31)

−
∫ 0

∞
sin2

(
jz

2

)
e−

|z|
ξ dz =

∫ ∞

0

sin2
(
jz

2

)
e−

z
ξ dz.

Next, we calculate∫ ∞

0

sin2
(
jt

2

)
e−

|t|
ξ dt = ξ

∫ ∞

0

sin2
((

jξ

2

)
t

ξ

)
e−

t
ξ d

t

ξ
=

(call t
ξ =: x and jξ

2 =: a1)

ξ

∫ ∞

0

sin2 (a1x) e
−xdx = (32)

(by Wolfram Alpha Computational Inteligence)

ξ

(
2a21

4a21 + 1

)
=

j2ξ3

2 (j2ξ2 + 1)
.

Thus ∫ ∞

−∞
sin2

(
jt

2

)
e−

|t|
ξ dt =

j2ξ3

j2ξ2 + 1
, j = 0, 1, ..., r. (33)

Consequently, it holds

1

2ξ

∫ ∞

−∞
sin2

(
jt

2

)
e−

|t|
ξ dt =

j2ξ2

2 (j2ξ2 + 1)
→ 0, as ξ → 0, j = 0, 1, ..., r. (34)

Finally we obtain

−2f ′′ (x)

r∑
j=0

αj
1

2ξ

(∫ ∞

−∞
sin2

(
jt

2

)
e−

|t|
ξ dt

)
= −f ′′ (x)

 r∑
j=0

αj
j2

(j2ξ2 + 1)

 ξ2.

(35)
Clearly now it is ∆1 (x) = ∆ (x) .
The proof of the theorem is finally completed. □

We finish with

Corollary 2.2. It follows (ξ > 0, x ∈ R)

∥Pr,ξ (f, x)− f (x)∥∞ ≤ ω1 (f
′′ + f.ξ)

 r∑
j=0

|αj | j2 (j + 1)

 ξ2+ (36)

∥f ′′ (x)∥∞

 r∑
j=0

|αj |
j2

1 + j2ξ2

 ξ2 → 0, as ξ → 0.

Proof. Easy, by (9) and (10). □
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