• Title/Summary/Keyword: Phylogenetic diversity

Search Result 635, Processing Time 0.02 seconds

Cyanobacterial Diversity Shifts Induced by Butachlor in Selected Indian Rice Fields in Eastern Uttar Pradesh and Western Bihar Analyzed with PCR and DGGE

  • Kumari, Nidhi;Narayan, Om Prakash;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.

Genetic Compositions of Broad bean wilt virus 2 Infecting Red Pepper in Korea

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Nam, Moon;Kim, Jeong-Soo;Kim, Kook-Hyung;Cha, Byeongjin;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.274-284
    • /
    • 2013
  • The incidence of Broad bean wilt virus 2 (BBWV2) on red pepper was investigated using the samples obtained from 24 areas of 8 provinces in Korea. Two hundred and five samples (79%) out of 260 collected samples were found to be infected with BBWV2. While the single infection rate of BBWV2 was 21.5%, the co-infection rate of BBWV2 with Cucumber mosaic virus, Pepper mottle virus, Pepper mild mottle virus and/or Potato virus Y was 78.5%. To characterize the genetic diversity of BBWV2 Korean isolates, 7 isolates were fully sequenced and analyzed. Phylogenetic analyses revealed that BBWV2 isolates could be divided largely into two groups as Group I and Group II. Based on the partial sequence analyses, 153 selected BBWV2 isolates were subgrouped into GS-I (21.6%), GS-II (3.9%) and GS-III (56.9%). BBWV2 GS-III, which was predominant in Korea, appears to be a new combination between Group I RNA-1 and Group II RNA-2. Viral disease incidence of BBWV2 on red pepper was under 2% before 2004. However, the incidence was increased abruptly to 41.3% in 2005, 58.2% in 2006 and 79% in 2007. These rapid increases might be related with the emergence of new combinations between BBWV2 groups.

Genetic Relationships between Gardenia jasminoides var. radicans and G. jasminoides for. grandiflora Using ISSR Markers (SSR을 이용한 꽃치자와 열매치자의 유전적 관계)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.24-30
    • /
    • 2007
  • Inter simple sequence repeat (ISSR) markers were performed in order to analyse the genetic relation-ships of both taxa of Gardenia jasminoides var. radicans and G. jasminoides for. grandifora. Over the 88 fragments, only one locus (ISSR-11-05) was specific to G. jasminoides var. radicans and only one (ISSR-09-05) G. jasminoides for. grandiflora. Although G. jasminoides var. radicans showed low levels of alleles and Shannon's information index than G. jasminoides for. Grandiflora, however, there was not significant differences (p > 0.05). For both taxa the mean genetic diversity of natural populations was higher than that of cultivation populations. It was suggested that domestication processes via artificial selection do not have eroded the high levels of genetic diversity. ISSR markers were more effective in classifying natural populations of wild G. jasminoides in East Asia as well as cultivated G. jasminoides. The information about the phylogenetic relationship of G. jasminoides var. radicans and its closely related species is very valuable of the systematics of genus Gardenia, the origin of cultivated G. jasminoides, and future G. jasminoides breeding.

Phylogenetic Diversity of Bacteria Associated with the Marine Sponges, Spirastrella abata and Cinachyrella sp. (해면 Spirastrella abata와 Cinachyrella sp.의 공생 세균의 계통학적 다양성)

  • Cho, Hyun-Hee;Shim, Eun-Jung;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.177-182
    • /
    • 2010
  • The bacterial community structure of two marine sponges, Spirastrella abata and Cinachyrella sp. collected from Jeju Island, in April 2009, was analyzed by 16S rDNA-denaturing gradient gel electrophoresis (DGGE). DGGE banding patterns indicated 8 and 7 bands for Spirastrella abata and Cinachyrella sp., respectively. Comparative sequence analysis of variable DGGE bands revealed from 92% to 100% similarity to the known published sequences. The bacterial groups associated with Spirastrella abata were Alphaproteobacteria and Deltaproteobacteria. The bacterial community of Cinachyrella sp. consisted of Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. Alphaproteobacteria was common and predominant in both the sponge species. Deltaproteobacteria was found only in Spirastrella abata while Actinobacteria and Gammaproteobacteria were found only in Cinachyrella sp. The results revealed that though the common bacterial group was found in both the sponges, the bacterial community profiles differed between the two sponge species obtained from the same geographical location.

RFLP Analysis of cry1 and cry2 Genes of Bacillus thuringiensis Isolates from India

  • Patel, Ketan D.;Ingle, Sanjay S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.729-735
    • /
    • 2012
  • The PCR-RFLP method has been useful for detection of known genes and identification of novel genes. In the present study, degenerate primers were designed from five groups of cry1 genes for PCR-RFLP analysis. Bacillus thuringiensis (Bt) isolates from different regions were evaluated for PCR amplification of various cry1 genes using newly designed primers and cry2 genes using reported primers. PCR analysis showed an abundance of cry1A genes and especially cry1Ac genes in isolates from all regions. RFLP analysis revealed the presence of multiple cry1A genes in isolates from central and southern regions. Unique digestion patterns of cry1A genes were observed in isolates from each region. Few of the isolates represented a digestion pattern of cry1A genes that did match to any of the known cry1A genes. RFLP analysis suggested an abundance of cry2Ab along with a novel cry2 gene in Bt isolates from different regions of India. Sequence analysis of the novel cry2 gene revealed 95% sequence identity to cry2Ab and cry2Ah genes. Phylogenetic analysis revealed that the novel cry2 gene could have diverged earlier than the other cry2 genes. Our results encourage finding of more diverse cry2 genes in Bt isolates. Rarefaction analysis was used to compare cry1A gene diversity in isolates from different soil types. It showed a higher degree of cry1A gene diversity in isolates from central region. In the present study, we propose the use of novel degenerate primers for cry1 genes and the PCR-RFLP method using a single enzyme to distinguish multiple cry1A and cry2 genes as well as identify novel genes.

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

Bacterial Diversity of the Han River as Determined by 16S rRNA Gene Analysis (16S rRNA 유전자 계통분석에 의한 한강수계의 세균 다양성)

  • Han, Suk-Kyun;Lee, Il-Gyu;Ahn, Tae-Young
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.194-199
    • /
    • 1998
  • Bacterial diversity was determined by amplification and sequencing of 16S rDNA at Tancheon and Jungrang in Han river. Twenty-seven clones constructed were divided 7 groups using RFLP. Fifteen clones were classified 4 groups in Tancheon and the group (HT-1 clone) including many clones was affiliated a high similarity with Aerobacter cryaerophilus (the class Proteobacteria including members of the delta subdivisions). The other two groups (HT-6 and HT-9 clone) including several clones were classified with the class Cytophagales in Tancheon. Twelve clones were classified 3 groups in Jungrang and the group (HJ-1 clone) including many clones was affiliated a high similarity with Sphingomonas sp. (the class Proteobacteria including members of the alpha subdivisions). As a whole results, the class Proteobacteria (alpha, beta and delta subdivision), the order Cytophagales, and the order Actinomycetales were detected.

  • PDF

Prevalence and Subtypes of Blastocystis in Alpacas, Vicugna pacos in Shanxi Province, China

  • Ma, Ye-Ting;Liu, Qing;Xie, Shi-Chen;Li, Xiao-Dong;Ma, Yuan-Yuan;Li, Tao-Shan;Gao, Wen-Wei;Zhu, Xing-Quan
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.2
    • /
    • pp.181-184
    • /
    • 2020
  • Blastocystis, an enteric protist, has been reported to be an important cause of protozoal gastrointestinal manifestations in humans and animals worldwide. Animals harboring certain Blastocystis subtypes (STs) may serve as a potential source of human infection. However, information about the prevalence and genetic diversity of Blastocystis in alpacas is limited. In the present study, a total of 366 fecal samples from alpacas in Shanxi Province, northern China, were examined for Blastocystis by PCR amplification of the small subunit rRNA gene, followed by sequencing and phylogenetic analysis. The prevalence of Blastocystis in alpacas was 23.8%, and gender difference in the prevalence of Blastocystis was observed. The most predominant Blastocystis ST was ST10, followed by ST14 and ST5. The detection of ST5, a potentially zoonotic genotype, indicates that alpacas harboring ST5 could be a potential source of human infection with Blastocystis. These data provide new insight into the prevalence and genetic diversity of Blastocystis in alpacas.

Microbial Rhodopsins: Genome-mining, Diversity, and Structure/Function

  • Jung, Kwang-Hwan;Vishwa Trivedi;Yang, Chii-Shen;Oleg A. Sineschekov;Elena N. Spudich;John L. Spudich
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.45-48
    • /
    • 2002
  • Microbial rhodopsins, photoactive 7-transmembrane helix proteins that use retinal as their chromophore, were observed initially in the Archaea and appeared to be restricted to extreme halophilic environments. Our understanding of the abundance and diversity of this family has been radically transformed by findings over the past three years. Genome sequencing of cultivated microbes as well as environmental genomics have unexpectedly revealed archaeal rhodopsin homologs in the other two domains of life as well, namely Bacteria and Eucarya. Organisms containing these homologs inhabit such diverse environments as salt flats, soil, freshwater, and surface and deep ocean waters, and they comprise a broad phylogenetic range of microbial life, including haloarchaea, proteobacteria, cyanobacteria, fungi, and algae. Analysis of the new microbial rhodopsins and their expression and structural and functional characterization reveal that they fulfill both ion transport and sensory functions in various organisms, and use a variety of signaling mechanisms. We have obtained the first crystallographic structure for a photosensory member of this family, the phototaxis receptor sensory rhodopsin II (SRII, also known as phoborhodopsin) that mediates blue-light avoidance by the haloarchaeon Natronobacterium pharaonis. The structure obtained from x-ray diffraction of 3D crystals prepared in a cubic lipid phase reveals key features responsible for its spectral tuning and its sensory function. The mechanism of SRII signaling fits a unified model for transport and signaling in this widespread family of phototransducers.

  • PDF

Ectomycorrhizal Fungal Diversity on Abies korea and Taxus cuspidata at Two Altitudes in Mt. Halla (고도에 따른 한라산 구상나무와 주목의 외생균근균 다양성 비교)

  • Lee, Ji-Eun;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.47 no.3
    • /
    • pp.199-208
    • /
    • 2019
  • In this study, the community structures of the ectomycorrhizal (ECM) fungi in the roots of Abies koreana and Taxus cuspidata were investigated at different altitudes of Mt. Halla. We identified the collected ECM root tips based on morphological characteristics and phylogenetic analysis through sequencing of the rDNA ITS regions. From the roots of A. koreana and T. cuspidata, 11 species and 12 species were identified, respectively. The Shannon's index and species evenness and abundance of the ECM fungi were higher in the higher than lower regions, regardless of host plant species, however, the number of ECM root tips showed the opposite pattern. The community similarity among the ECM fungi in A. koreana was significantly higher than that among the ECM fungi in T. cuspidata or than that between A. koreana and T. cuspidata (p < 0.05). These results could be useful for the conservation and management of the habitat of A. koreana, which is threatened with extinction due to increasing ambient air temperature.