Browse > Article

Phylogenetic Diversity of Bacteria Associated with the Marine Sponges, Spirastrella abata and Cinachyrella sp.  

Cho, Hyun-Hee (Department of Biotechnology, Hannam University)
Shim, Eun-Jung (Department of Life Science, Hannam University)
Park, Jin-Sook (Department of Biotechnology, Hannam University)
Publication Information
Korean Journal of Microbiology / v.46, no.2, 2010 , pp. 177-182 More about this Journal
Abstract
The bacterial community structure of two marine sponges, Spirastrella abata and Cinachyrella sp. collected from Jeju Island, in April 2009, was analyzed by 16S rDNA-denaturing gradient gel electrophoresis (DGGE). DGGE banding patterns indicated 8 and 7 bands for Spirastrella abata and Cinachyrella sp., respectively. Comparative sequence analysis of variable DGGE bands revealed from 92% to 100% similarity to the known published sequences. The bacterial groups associated with Spirastrella abata were Alphaproteobacteria and Deltaproteobacteria. The bacterial community of Cinachyrella sp. consisted of Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. Alphaproteobacteria was common and predominant in both the sponge species. Deltaproteobacteria was found only in Spirastrella abata while Actinobacteria and Gammaproteobacteria were found only in Cinachyrella sp. The results revealed that though the common bacterial group was found in both the sponges, the bacterial community profiles differed between the two sponge species obtained from the same geographical location.
Keywords
16S rDNA; bacterial diversity; DGGE; marine sponge; sponge-associated bacteria;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Muscholl-Silberhorn, A., V. Thiel, and J.F. Imhoff. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb. Ecol. 55, 94-106.   DOI   ScienceOn
2 Radwan, M., A. Hanora, J. Zan, N.M. Mohamed, D.M. Abo-Elmatty, S.H. Abou-El-Ela, and R.T. Hill. 2010. Bacterial community analyses of two Red Sea sponges. Mar. Biotechnol. 12, 350-360.   DOI   ScienceOn
3 Ramm, W., W. Schatton, I. Wagner-Dobler, V. Wray, M. Nimtz, H. Tokuda, F. Enjyo, H. Nishino, W. Beil, R. Heckmann, V. Lurtz, and S. Lang. 2004. Diglucosyl-glycerolipids from the marine sponge-associated Bacillus pumilus strain AAS3: Their production, enzymatic modification and properties. Appl. Microbiol. Biotechnol. 64, 497-504.   DOI   ScienceOn
4 Selvin, J. 2009. Exploring the antagonistic producer Streptomyces MSI051: Implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr. Microbiol. 58, 459-463.   DOI   ScienceOn
5 Sipkema, D. and H.W. Blanch. 2009. Spatial distribution of bacteria associated with the marine sponge Tethya californiana. Mar. Biol. 157, 627-638.
6 Mohamed, N., J.J. Enticknap, J.E. Lohr, S.M. McIntosh, and R.T. Hill 2008. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ. Microbiol. 74, 1209-1222.   DOI   ScienceOn
7 Mohamed, N.M., V. Rao, M.T. Hamann, M. Kelly, and R.T. Hill. 2008. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. Microbiol. 74, 4133-4143.   DOI   ScienceOn
8 Park, J.S., J.J. Sim, and K.D. An. 2009. Community structure of bacteria associated with two marine sponges from Juju Island based on 16S rDNA-DGGE profile. Kor. J. Microbiol. 45, 170-176.   과학기술학회마을
9 Li, Z.Y., L.M. He, J. Wu, and Q. Jiang. 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol. 329, 75-85.   DOI   ScienceOn
10 Li, Z., L. He, and X. Miao. 2007. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472.   DOI   ScienceOn
11 Li, Z.Y. and Y. Liu. 2006. Marine sponge Craniella austrialiensisassociated bacterial diversity revelation based on 16S rDNA library and biologically active actinomycetes screening, phylogenetic analysis. Lett. Appl. Microbiol. 43, 410-416.   DOI   ScienceOn
12 Zhang, H., W. Zhang, Y. Jin, M. Jin, and X. Yu. 2008. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie van Leeuwenhoek 93, 241-248.   DOI   ScienceOn
13 Mangano, S., L. Michaud, C. Caruso, M. Brilli, V. Bruni, R. Fani, and A.L. Giudice. 2009. Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: A preliminary analysis. Res. Microbiol. 160, 27-37.   DOI   ScienceOn
14 Isaacs, L.T., J. Kan, L. Nguyen, P. Videau, M.A. Anderson, T.L. Wright, and R.T. Hill. 2009. Comparison of the bacterial communities of wild and captive sponge Clathria prolifera from the Chesapeake Bay. Mar. Biotechnol. (NY) 11, 758-770.   DOI   ScienceOn
15 Lafi, F.F., M.J. Garson, and J.A. Fuerst. 2005. Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb. Ecol. 50, 213-220.   DOI   ScienceOn
16 Lee, O.O., Y.H. Wong, and P.Y. Qian. 2009. Inter- and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl. Environ. Microbiol. 75, 3513-3521.   DOI   ScienceOn
17 Thoms, C., M. Horn, W. Wagner, U. Hentschel, and P. Proksch. 2003. Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following trasplantation. Mar. Biol. 142, 685-692.   DOI
18 Anderson, S.A., P.T. Northcote, and M.J. Page. 2010. Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. FEMS Microb. Ecol. 72, 328-342.   DOI   ScienceOn
19 Weisz, J.B., U. Hentschel, N. Lindquist, and C.S. Martens. 2007. Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar. Biotechnol. 152, 475-483.
20 Wichels, A., S. Wurtz, H. Dopke, C. Schutt, and G. Gerdts. 2006. Bacterial diversity in the Breadcrumb sponge Halichondria panicea (pallas). FEMS Microbiol. Ecol. 56, 102-118.   DOI   ScienceOn
21 Thiel, V., S.C. Neulinger, T. Staufenberger, R. Schmaljohann, and J.F. Imhoff. 2007. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol. Ecol. 59, 47-63.   DOI   ScienceOn
22 Cho, H.H. and J.S. Park. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. Kor. J. Microbiol. 45, 155-162.   과학기술학회마을
23 Friedrich, A.B., J. Hacker, I. Fischer, P. Proksch, and U. Hentschel. 2001. Temporal variations of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113.   DOI
24 Hardoim, C.C., R. Costa, F.V. Araujo, E. Hajdu, R. Peixoto, U. Lins, A.S. Rosado, and J.D. van Elsas. 2009. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 75, 3331-3343.   DOI   ScienceOn
25 Taylor, M.W., P.J. Schupp, R. de Nys, S. Kjelleberg, and P.D. Steinberg. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433.   DOI   ScienceOn
26 Thiel, V., S. Leininger, R. Schmaljohann, F. Brummer, and J.F. Imhoff. 2007. Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (demospongiae, tetractinomorpha). Microb. Ecol. 54, 101-111.   DOI   ScienceOn