• Title/Summary/Keyword: Photovoltaic Switch

Search Result 59, Processing Time 0.02 seconds

Bidirectional Flyback Converter Design Methodology for Differential Power Processing Modules in PV Applications (PV 시스템의 차동 전력 조절기 모듈용 양방향 플라이백 컨버터 설계 방법)

  • Park, Seungbin;Kim, Mina;Jeong, Hoejeong;Kim, Taewon;Kim, Katherine A.;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • A bidirectional flyback converter is a suitable topology for use in a PV-to-bus differential power processing (DPP) module for PV applications due to its electrical isolation capability, bidirectional power transfer, high step-up ratio, and simple circuit structure. However, the bidirectional flyback converter design should consider the effect of the output-side power switch utilized for bidirectional operation compared with that of the conventional flyback converter. This study presents the structure and design methodology of the bidirectional flyback converter for a PV DPP module. Magnetizing inductance is designed by calculating the power loss of converter components within the rated load range under the discontinuous conduction mode, which is unaffected by the reverse recovery characteristics of the anti-parallel diode of the output-side power switch. The validity of the proposed design methodology is verified using a 25 W bidirectional flyback converter prototype. The operational principles and the performance of the DPP operation are verified using practical DPP modules consisting of bidirectional flyback converters implemented according to the proposed design methodology.

Fault Diagnosis of Solar Power Inverter Using Characteristics of Trajectory Image of Current And Tree Model (전류 궤적 영상의 특징과 트리모델을 이용한 태양광 전력 인버터의 고장진단)

  • Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.102-108
    • /
    • 2010
  • The photovoltaic system changes solar energy into DC by solar cell and this DC is inverted into AC which is used in general houses by inverter. Recently, the use of power of the photovoltaic system is increased. Therefore, the study of 3 phase solar system to transmit large power is very important. This paper proposes a method that finds simply faults and diagnoses the switch open faults of 3-phase pulse width modulation (PWM) inverter of grid-connected photovoltaic system. The proposed method in $\alpha\beta$ plane uses the patterns of trajectory image as the characteristic parameters and differenciates a normal state and open states of switches. Then, the result is made into tree. The tree is composed of 21 fault patterns and the parameters to classify faults are a shape, a trajectory area, a distributed angle, and a typical vector angle. The result shows that the proposed method diagnosed fault diagnoses, classified correctly them, and made a pattern tree by fault patterns.

Enhanced Voltage Gain Single-Phase Current-Fed qZ-Source Inverter (전압 이득이 향상된 단상 전류형 qZ-소스 인버터)

  • Shin, Hyun-Hak;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.305-311
    • /
    • 2013
  • This paper proposes a performance improvement of existing single-phase current-fed qZ-Source inverter. Voltage gain of the traditional voltage-fed full-bridge inverter and single-phase current-fed qZ-source inverter is only equal to or smaller than input voltage. The proposed inverter can obtain twice higher voltage gain than the single-phase current-fed qZ-Source inverter by adding an extra switch and a capacitor in the circuit. In addition, the proposed inverter shares the common ground between dc input and ac output voltage. Therefore, the proposed inverter can eliminate the possible ground leakage current problem when it is used for grid-tied photovoltaic inverter system. A 120 W prototype inverter is built and tested to verify performances of the proposed inverter.

High Efficiency Power Conversion Device for Photovoltaic Power Generation (태양광 발전을 위한 고효율 전력변환장치)

  • Kim, Young-Cheal;Suh, Ki-Young;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.450-452
    • /
    • 1996
  • In this paper, the authors propose a DC-DC boost converter of high efficiency by partial resonant switching mode, the switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber inconventional circuit. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Low Loss Soft Switching Boost Converter (저 손실형 소프트 스위칭 승압형 컨버터)

  • Park, So-Ri;Jang, Su-Jin;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.34-36
    • /
    • 2007
  • A new soft switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn on and off. Because of that, the whole system efficiency is reduced. The proposed converter utilizes soft switching method using an auxiliary switch and resonant circuit. Thus, the converter reduces switching losses lower than ones of hard switching method. The proposed soft switching boost converter can be applied to photovoltaic system, power factor correction circuit and so on.

  • PDF

The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices (3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.148-151
    • /
    • 2017
  • This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.

Grid Connected PV System Based on High-Frequency Link With Soft - Switching (소프트-스위칭 고주파 링크 방식을 적용한 계통연계형 태양광 발전 시스템에 관한 연구)

  • 주연홍;이성룡;전칠환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.309-314
    • /
    • 2002
  • New grid connected PV(Photovoltaic) system of high-frequency link with soft-switching is proposed to solve problems related to the loss of transformer and switch. The operation of Proposed system using the soft switching that consists of high frequency transformer is confirmed by computer simulation and experiment. It can improve its efficiency and solve the Problems mentioned above.

Stand-alone PV System without Battery (축전지 없는 태양광 시스템의 구성)

  • Hong, Jeng-Pyo;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Jong-Dal;Sohn, Mu-Heon;Kim, Gyu-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.149-153
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.

  • PDF

A New Soft Switching Converter for Photovoltaic System (태양광용 새로운 소프트 스위칭 컨버터)

  • Won, Dong-Jo;Park, Sang-Hoon;Park, So-Ri;Lee, Su-Won;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.133-136
    • /
    • 2008
  • This paper presents a novel soft switching topology with resonant DC-DC converter and inverter. The resonant DC-DC converter consists of the auxiliary switch, resonant capacitor and inductor. All switches in the proposed topology is turn on at ZCS and turn off at ZVS operation. The proposed soft switching technology can be obtained the reduced switching losses and voltage and current stress of the power devices. Therefore, the resonant converter efficiency is higher than conventional boost converter. Simulation results on a 1kW soft switching converter are presented.

  • PDF

Design and analysis of high efficiency soft switching boost converter (고효율 소프트 스위칭 부스트 컨버터의 설계 및 해석)

  • Park, So-Ri;Park, Sang-Hoon;Cha, Kil-Ro;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.121-123
    • /
    • 2008
  • A high efficiency soft switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn on and off. Because of those, the whole system efficiency is reduced. The proposed converter utilizes soft switching method using resonant circuit with an auxiliary switch. Therefore, the proposed converter reduces switching losses lower than the hard switching. The proposed soft switching boost converter can be applied to photovoltaic system, power factor correction circuit and etc.

  • PDF