• Title/Summary/Keyword: Photosynthetic vegetation

Search Result 24, Processing Time 0.024 seconds

Comparison of field- and satellite-based vegetation cover estimation methods

  • Ko, Dongwook W.;Kim, Dasom;Narantsetseg, Amartuvshin;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.34-44
    • /
    • 2017
  • Background: Monitoring terrestrial vegetation cover condition is important to evaluate its current condition and to identify potential vulnerabilities. Due to simplicity and low cost, point intercept method has been widely used in evaluating grassland surface and quantifying cover conditions. Field-based digital photography method is gaining popularity for the purpose of cover estimate, as it can reduce field time and enable additional analysis in the future. However, the caveats and uncertainty among field-based vegetation cover estimation methods is not well known, especially across a wide range of cover conditions. We compared cover estimates from point intercept and digital photography methods with varying sampling intensities (25, 49, and 100 points within an image), across 61 transects in typical steppe, forest steppe, and desert steppe in central Mongolia. We classified three photosynthetic groups of cover important to grassland ecosystem functioning: photosynthetic vegetation, non-photosynthetic vegetation, and bare soil. We also acquired normalized difference vegetation index from satellite image comparison with the field-based cover. Results: Photosynthetic vegetation estimates by point intercept method were correlated with normalized difference vegetation index, with improvement when non-photosynthetic vegetation was combined. For digital photography method, photosynthetic and non-photosynthetic vegetation estimates showed no correlation with normalized difference vegetation index, but combining of both showed moderate and significant correlation, which slightly increased with greater sampling intensity. Conclusions: Results imply that varying greenness is playing an important role in classification accuracy confusion. We suggest adopting measures to reduce observer bias and better distinguishing greenness levels in combination with multispectral indices to improve estimates on dry matter.

A Study on Estimation Method for $CO_2$ Uptake of Vegetation using Airborne Hyperspectral Remote Sensing

  • Endo, Takahiro;Yonekawa, Satoshi;Tamura, Masayuki;Yasuoka, Yoshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1076-1080
    • /
    • 2003
  • $CO_2$ uptake of vegetation is one of the important variables in order to estimate photosynthetic activity, plant growth and carbon budget estimations. The objective of this research was to develop a new estimation method of $CO_2$ uptake of vegetation based on airborne hyperspectral remote sensing measurements in combination with a photosynthetic rate curve model. In this study, a compact airborne spectrographic imager (CASI) was used to obtain image over a field that had been set up to study the $CO_2$ uptake of corn on August 7, 2002. Also, a field survey was conducted concurrently with the CASI overpass. As a field survey, chlorophyll a content, photosynthetic rate curve, Leaf area, dry biomass and light condition were measured. The developed estimation method for $CO_2$ uptake consists of three major parts: a linear mixture model, an enhanced big leaf model and a photosynthetic rate curve model. The Accuracy of this scheme indicates that $CO_2$ uptake of vegetation could be estimated by using airborne hyperspectral remote sensing data in combination with a physiological model.

  • PDF

Estimation of Net Primary Production (NPP) of Inner Mongol in China by MODIS Data

  • Park, Jong-Geol;Yasuda, Yoshizumi;Ohkuro, Tosiya
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.447-449
    • /
    • 2003
  • Remotely sensed data can be used to estimate biomass production using methodologies relating vegetation indices to light absorption or to leaf photosynthetic capacity. The considerations of both light absorption and photosynthetic capacity in remote sensing-based modeling to estimate biomass production or NPP was introduced based upon Monteith model NPP is one of a evaluation of land degradation. NPP was estimated from annual maximum NDVI by MODIS data. It was known that NPP of the grassland that except the forest and the farming ground was distributed between 50-200g /m2.

  • PDF

Performance Assessment of Three Turfgrass Species, in Three Different Soil Types, and their Responses to Water Deficit in Reinforced Cells, Growing in the Urban Environment

  • Ow, L.F;Ghosh, S.;Chin, S.W.
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.338-347
    • /
    • 2015
  • Reinforcement cells are used to aid grass growth and taken together, this serves to extend greenery beyond the conventional spaces of lawns, tree pits, gardens, and parks, and is advantageous to urban cities since space for greening is often limited. Drought has variable effects on plant life and the resilience of turf to drought resistance also varies with species. Changes in photosynthetic ability were more pronounced for media rather than grass species. The media of sand without organic matter was found to be least suited for drought resistance. Normalized difference vegetation index (NDVI) and digital image analysis (DIA) data were generally in favour of Zoysia species as oppose to A. compressus. In A. compressus, selective traits such as, a more extensive root system and lower specific leaf area (SLA) were not an underlying factor that assisted this grass with enhanced drought resistance. Generally, WUE was found to be strongly related to plant characterises such as overall biomass, photosynthetic features as well as the lushness indexes, and specific leaf area. This study found a strong relationship between WUE and a suite of plant characteristics. These traits should serve as useful selection criteria for species with the ability to resist water stress.

Studies on the Classification, Productivity, and Distribution of $C_3,;C_4 $ and CAM Plants in Vegetations of KoreaIII. The Distribution of $C_3 and C_4$Type Plants (한국의 식생에 있어서$C_3, C_4 $ 및 CAM 식물의 분류, 생산력 및 분포에 관한 연구 3. $C_3 와 C_4$ 형 식물의 식생분포와 종분포)

  • Chang, Nam-Kee;Sung-Kyu Lee
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.128-141
    • /
    • 1983
  • The districbution of $C_3; and; C_4$ type plants in Korea were studied. In the standpoint of photosynthetic types, plant distribution in Korea is classified as $C_3; and; C_4$ type plant zones. The forest destroyed by man interference, cultivating areas, and seashore areas are characterized by the dominant of $C_4$ type plants.(Figs. 2, 3, 4, 5) According to the results of this study, $C_3; and; C_4$ type plant distribution in Korea has a great relation to the habitat of plant vegetation (Table 1). The arid areas were in high proportion of C4 flora percenntages, while the well-developed woody forests or the vegetation of humid areas were in lower proportion(Fig.8).

  • PDF

Experimental Studies on the Effects of Ozone on Growth and Photosynthetic Activity of Japanese Forest Tree Species

  • Yamaguchi, Masahiro;Watanabe, Makoto;Matsumura, Hideyuki;Kohno, Yoshihisa;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.65-78
    • /
    • 2011
  • Ozone ($O_3$) is a main component of photochemical oxidants, and a phytotoxic anthropogenic air pollutant. In North America and Europe, the current concentration of $O_3$ has been shown to have significant adverse effects on vegetation. In this review, we summarize the experimental studies on the effects of $O_3$ on the growth and photosynthetic activity of Japanese forest tree species to understand the present knowledge and provide sound basis for future research toward the assessment of $O_3$ impacts on Japanese forest ecosystem. Since the 1990s, several Japanese researchers have conducted the experimental studies on the effects of ambient levels of $O_3$ on growth and physiological functions such as net photosynthesis of Japanese forest tree species. Although the sensitivity to $O_3$ of whole-plant growth is quite different among the species, it was suggested that the current ambient levels of $O_3$ in Japan are high enough to adversely affect growth and photosynthetic activity of Japanese forest tree species classified into high $O_3$ sensitivity group such as Japanese beech. The N load to soil has been shown to reduce the sensitivity to $O_3$ of Japanese larch and increase that of Japanese beech. To establish the critical level of $O_3$ for protecting Japanese forest tree species, therefore, it is necessary to take into account the N deposition from the atmosphere. There is little information on the combined effects of $O_3$ and other environmental factors such as elevated $CO_2$ and drought on growth and physiological functions of Japanese forest tree species. Therefore, it is necessary to promote the experimental study and accumulate the information on the combined effects of $O_3$ and any other abiotic environmental factors on Japanese forest tree species.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

Effect of Calcium Chloride($CaCl_2$) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii (염화칼슘 처리가 산벚나무 엽의 엽록소형광반응과 광합성기구에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.922-928
    • /
    • 2010
  • There is a little information on the effect of calcium cloride ($CaCl_2$) which is used as deicing salt in Korea on the physiological responses of the street trees. Prunus sargentii is one of the most widespread tree species of street vegetation in Korea. In this study, the effect of $CaCl_2$ on photosynthetic apparatus such as chlorophyll fluorescence image and light response curve of P. sargentii in relation to their leaf and root collar growth responses were investigated. To study the effect of $CaCl_2$ treatment in the early spring, we irrigated twice in rhizosphere of P. sargentii (3-year-old) planted plastic pots with solution of 0.5%, 1.0%, 3.0% $CaCl_2$ concentration before leaf expansion. Results after treatments, total chlorophyll contents and the chlorophyll a/b, photosynthetic rate, quantum yield, dark respiration decreased with increasing $CaCl_2$ concentration. On the contrary, light compensation point increased with increasing $CaCl_2$ concentration. Through the linear regressions of correlation of photosynthetic rate with photosynthetic parameters (quantum yield, dark respiration and light compensation point), we found a significant relationship (p<0.05) between photosynthetic rate and quantum yield and light compensation point except dark respiration. Calcium cloride ($CaCl_2$) induced inhibition of photochemical efficiency ($F_v/F_M$) and non-photochemical quenching (NPQ) were found in treatments of $CaCl_2$, and these reduction rates between control and CaCl2 treatments were drastically showed at 80 days. We suggest that physiological activities are limited from treatment of $CaCl_2$. These reductions of photosynthetic apparatus ability caused eventually the reduction of leaf and diameter at root collar growth.

Effect of Calcium Chloride (CaCl2) on the Characteristics of Photosynthetic Apparatus, Stomatal Conductance, and Fluorescence Image of the Leaves of Cornus kousa (염화칼슘 처리가 산딸나무 잎의 광합성 기구, 기공전도도 및 형광이미지 특성에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 2009
  • Deicing salt is used to melt snow and ice on the road for traffic safety during the winter season, which accumulates in the roadside vegetation and induces visible injuries. The damage may accelerate particularly when it coincides with early spring leaf out. In order to better understand the response mechanisms, C. kousa (3-year-old) was irrigated twice prior to leaf bud in a rhizosphere with solutions of 0.5, 1.0, and 3.0% calcium chloride ($CaCl_2$) concentration, that were made by using an industrial $CaCl_2$ reagent practical deicing material in Seoul. Physiological traits of the mature leaves were progressively reduced by $CaCl_2$ treatment, resulting in reductions of total chlorophyll contents, chlorophyll a:b, photosynthetic rate, quantum yield, stomatal conductance, $F_V/F_M$, and NPQ. On the contrary, light compensation point and dark respiration were increased at high $CaCl_2$ concentration. A decrease in intercellular $CO_2$ concentration by stomatal closure first resulted in a reduced photosynthetic rate and then was accompanied by low substance metabolic rates and photochemical damage. Based on the reduction of physiological activities at all treatments ($CaCl_2$ 0.5%, 1.0%, and 3.0%), C. kousa was determined as one of the sensitive species to $CaCl_2$.

Studies on the Sambucus silliamsii var. coreana Nakai for Landscape use (야생딱총나무(Sambucus williamsii var. coreana Nakai)의 조경식목 화를 위한 기초 연구)

  • 김정미;박용진;이기훤
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.1
    • /
    • pp.139-148
    • /
    • 1993
  • The present experiments have been conducted to find out the plant's growth environments habitate, mode of life, characteristic of photosynthesis, habit of growth and propagation. The results of this study are as follows: 1. Sambucus williamsii var. Coreana distributes around all sides of native site without having any relation to altitude, inclination and direction. 2. In the native site, Robinia pseudo - acacia and its neighboring species were Prunus yedoensis, Acer pseudo-sieboldianum, Lindera obtusiloba and Staphylea bumalda. From 21 to 41 types of species were located in the vegetation of the quadrat area. 3. According to the variation of leaf temperature with the result of the change of net photosynthetic rate, the optimum temperature for growth is $25^{\circ}C$. 4. The rooted rate of vegetative propagation was the highest at 100ppm IBA plot and the lowest at 200ppm BA plot. 5. The rooted rates of Sambucus williamsii var. coreana in perlite 50% bed, vermiculite bed and peatmoss 50%+sand 50% bed are higher than others.

  • PDF