DOI QR코드

DOI QR Code

Comparison of field- and satellite-based vegetation cover estimation methods

  • Ko, Dongwook W. (Department of Forest Environmental System, Kookmin University) ;
  • Kim, Dasom (Department of Forest Environmental System, Kookmin University) ;
  • Narantsetseg, Amartuvshin (Institute of General and Experimental Biology, Mongolian Academy of Sciences) ;
  • Kang, Sinkyu (Department of Environmental Science, Kangwon National University)
  • Received : 2016.10.07
  • Accepted : 2016.12.06
  • Published : 2017.02.28

Abstract

Background: Monitoring terrestrial vegetation cover condition is important to evaluate its current condition and to identify potential vulnerabilities. Due to simplicity and low cost, point intercept method has been widely used in evaluating grassland surface and quantifying cover conditions. Field-based digital photography method is gaining popularity for the purpose of cover estimate, as it can reduce field time and enable additional analysis in the future. However, the caveats and uncertainty among field-based vegetation cover estimation methods is not well known, especially across a wide range of cover conditions. We compared cover estimates from point intercept and digital photography methods with varying sampling intensities (25, 49, and 100 points within an image), across 61 transects in typical steppe, forest steppe, and desert steppe in central Mongolia. We classified three photosynthetic groups of cover important to grassland ecosystem functioning: photosynthetic vegetation, non-photosynthetic vegetation, and bare soil. We also acquired normalized difference vegetation index from satellite image comparison with the field-based cover. Results: Photosynthetic vegetation estimates by point intercept method were correlated with normalized difference vegetation index, with improvement when non-photosynthetic vegetation was combined. For digital photography method, photosynthetic and non-photosynthetic vegetation estimates showed no correlation with normalized difference vegetation index, but combining of both showed moderate and significant correlation, which slightly increased with greater sampling intensity. Conclusions: Results imply that varying greenness is playing an important role in classification accuracy confusion. We suggest adopting measures to reduce observer bias and better distinguishing greenness levels in combination with multispectral indices to improve estimates on dry matter.

Keywords

References

  1. Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234-253. https://doi.org/10.1016/S0034-4257(98)00014-5
  2. Beck, L. R., Hutchinson, C. F., & Zauderer, J. (1990). A comparison of greenness measures in two semi-arid grasslands. Climatic Change, 17, 287-303. https://doi.org/10.1007/BF00138372
  3. Bergstedt, J., Westerberg, L., & Milberg, P. (2009). In the eye of the beholder: bias and stochastic variation in cover estimates. Plant Ecology, 204, 271-283. https://doi.org/10.1007/s11258-009-9590-7
  4. Bollard-Breen, B., Brooks, J. D., Jones, M. R. L., Robertson, J., Betschart, S., Kung, O., Craig Cary, S., Lee, C. K., & Pointing, S. B. (2015). Application of an unmanned aerial vehicle in spatial mapping of terrestrial biology and human disturbance in the McMurdo Dry Valleys, East Antarctica. Polar Biology, 38, 573-578. https://doi.org/10.1007/s00300-014-1586-7
  5. Boone, R. B., BurnSilver, S. B., Thornton, P. K., Worden, J. S., & Galvin, K. A. (2005). Quantifying declines in livestock due to land subdivision. Rangeland Ecology & Management, 58, 523-532. https://doi.org/10.2111/1551-5028(2005)58[523:QDILDT]2.0.CO;2
  6. Booth, D. T., Cox, S. E., Fifield, C., Phillips, M., & Williamson, N. (2005). Image analysis compared with other methods for measuring ground cover. Arid Land Research Management, 19, 91-100. https://doi.org/10.1080/15324980590916486
  7. Booth, D. T., Cox, S. E., & Berryman, R. D. (2006). Point sampling digital imagery with "Samplepoint.". Environmental Monitoring and Assessment, 123, 97-108. https://doi.org/10.1007/s10661-005-9164-7
  8. Boyd, C. S., & Svejcar, T. J. (2005). A visual obstruction technique for photo monitoring of willow clumps. Rangeland Ecology & Management, 58, 434-438. https://doi.org/10.2111/1551-5028(2005)058[0434:AVOTFP]2.0.CO;2
  9. Bradley, B. A., & Mustard, J. F. (2005). Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sensing of Environment, 94, 204-213. https://doi.org/10.1016/j.rse.2004.08.016
  10. Buckland, S. T., Borchers, D. L., Johnston, A., Henrys, P. A., & Marques, T. A. (2007). Line transect methods for plant surveys. Biometrics, 63, 989-998. https://doi.org/10.1111/j.1541-0420.2007.00798.x
  11. Burg, S., Rixen, C., Stockli, V., & Wipf, S. (2015). Observation bias and its causes in botanical surveys on high-alpine summits. Journal of Vegetation Science, 26, 191-200. https://doi.org/10.1111/jvs.12211
  12. Byambakhuu, I., Sugita, M., & Matsushima, D. (2010). Remote sensing of environment spectral unmixing model to assess land cover fractions in Mongolian steppe regions. Remote Sensing of Environment, 114, 2361-2372. https://doi.org/10.1016/j.rse.2010.05.013
  13. Canfield, R. H. (1941). Application of the line interception method in sampling range vegetation. Journal of Forestry, 39, 388-394.
  14. Chen, Z. M., Babiker, I. S., Chen, Z. X., Komaki, K., Mohamed, M. A. A., & Kato, K. (2004). Estimation of interannual variation in productivity of global vegetation using NDVI data. International Journal of Remote Sensing, 25, 3139-3159. https://doi.org/10.1080/0143116032000160435
  15. Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133-146. https://doi.org/10.1016/j.rse.2005.11.016
  16. Cui, G., Lee, W.-K., Kwak, D.-A., Choi, S., Park, T., & Lee, J. (2011). Desertification monitoring by LANDSAT TM satellite imagery. Forest Science and Technology, 7, 110-116. https://doi.org/10.1080/21580103.2011.594607
  17. Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structurefrom-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. https://doi.org/10.1016/j.rse.2016.05.019
  18. Daubenmire, R. (1959). A canopy-coverage method of vegetational analysis. Northwest Science, 33, 43-64.
  19. Dethier, M. N., Graham, E. S., Cohen, S., & Tear, L. M. (1993). Visual versus randompoint percent cover estimations: "objective" is not always better. Marine Ecology Progress Series, 96, 93-100. https://doi.org/10.3354/meps096093
  20. Fensholt, R., Sandholt, I., & Rasmussen, M. S. (2004). Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91, 490-507. https://doi.org/10.1016/j.rse.2004.04.009
  21. Fernandez-Gimenez, M. E., Batkhishig, B., Batbuyan, B., & Ulambayar, T. (2015). Lessons from the dzud: community-based rangeland management increases the adaptive capacity of Mongolian herders to winter disasters. World Development, 68, 48-65. https://doi.org/10.1016/j.worlddev.2014.11.015
  22. Floyd, D. A., & Anderson, J. E. (1987). A comparison of three methods for estimating plant cover. Journal of Ecology, 75, 221-228. https://doi.org/10.2307/2260547
  23. Gemmell, F. (1999). Estimating conifer forest cover with Thematic Mapper data using reflectance model inversion and two spectral indices in a site with variable background characteristics. Remote Sensing of Environment, 69, 105-121. https://doi.org/10.1016/S0034-4257(99)00004-8
  24. Guerschman, J. P., Hill, M. J., Renzullo, L. J., Barrett, D. J., Marks, A. S., & Botha, E. J. (2009). Estimating fractional cover of photosynthetic vegetation, nonphotosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sensing of Environment, 113, 928-945. https://doi.org/10.1016/j.rse.2009.01.006
  25. Hervouet, A., Dunford, R., Piegay, H., Belletti, B., & Tremelo, M.-L. (2011). Analysis of post-flood recruitment patterns in braided-channel rivers at multiple scales based on an image series collected by unmanned aerial vehicles, ultra-light aerial vehicles, and satellites. GIScience & Remote Sensing, 48, 50-73. https://doi.org/10.2747/1548-1603.48.1.50
  26. Hirobe, M., & Kondo, J. (2012). Effects of climate and grazing on surface soil in grassland. In N. Yamamura, N. Fujita, & A. Maekawa (Eds.), The Mongolian Ecosystem Network: Environmental Issues Under Climate and Social Changes (pp. 105-114). Japan: Springer.
  27. In, H.-J., & Park, S.-U. (2002). A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea. Atmospheric Environment, 36, 4173-4187. https://doi.org/10.1016/S1352-2310(02)00361-8
  28. Iverson, L. R., Cook, E. A., & Graham, R. L. (1989). A technique for extrapolating and validating forest cover across large regions calibrating AVHRR data with TM data. International Journal of Remote Sensing, 10, 1805-1812. https://doi.org/10.1080/01431168908904011
  29. Jang, K., Kang, S., Kim, J., Lee, C. B., Kim, T., Kim, J., Hirata, R., & Saigusa, N. (2010). Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation. Remote Sensing of Environment, 114, 657-673. https://doi.org/10.1016/j.rse.2009.11.010
  30. Karamysheva, Z. V., & Khramtsov, V. N. (1995). The steppes of Mongolia. Braun-Blanquetia, 17, 5-79.
  31. McCarthy, J. J. (2001). Climate change 2001: impacts, adaptation, and vulnerability: contribution of working group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  32. Meyer, W. B., Turner II, B. L. (1994). Changes in land use and land cover: a global perspective. Cambridge: Cambridge University Press.
  33. Milberg, P., Bergstedt, J., Fridman, J., Odell, G., & Westerberg, L. (2008). Observer bias and random variation in vegetation monitoring data. Journal of Vegetation Science, 19, 633-644. https://doi.org/10.3170/2008-8-18423
  34. Moody, A., & Woodcock, C. E. (1995). The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecology, 10, 363-379. https://doi.org/10.1007/BF00130213
  35. Mosier, A., Schimel, D., Valentine, D., Bronson, K., & Parton, W. (1991). Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350, 330-332. https://doi.org/10.1038/350330a0
  36. Phadnis, M. J., & Carmichael, G. R. (2000). Numerical investigation of the influence of mineral dust on the tropospheric chemistry of East Asia. Journal of Atmospheric Chemistry, 36, 285-323. https://doi.org/10.1023/A:1006391626069
  37. Pickup, G., Chewings, V. H., & Nelson, D. J. (1993). Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. Remote Sensing of Environment, 43, 243-263. https://doi.org/10.1016/0034-4257(93)90069-A
  38. Ramsey, F. L. (1979). Parametric models for line transect surveys. Biometrika, 66, 505-512. https://doi.org/10.1093/biomet/66.3.505
  39. Rango, A., Laliberte, A., Herrick, J. E., Winters, C., Havstad, K., Steele, C., & Browning, D. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3, 33542. https://doi.org/10.1117/1.3216822
  40. Reinke, K., Reinke, K., Jones, S., & Jones, S. (2006). Integrating vegetation field surveys with remotely sensed data. Ecological Management and Restoration, 7, S18-S23. https://doi.org/10.1111/j.1442-8903.2006.00287.x
  41. Richardson, M. D., Karcher, D. E., & Purcell, L. C. (2001). Quantifying turfgrass cover using digital image analysis. Crop Science, 41, 1884-1888. https://doi.org/10.2135/cropsci2001.1884
  42. Stoner, D. C., Sexton, J. O., Nagol, J., Bernales, H. H., & Edwards, T. C. (2016). Ungulate reproductive parameters track satellite observations of plant phenology across latitude and climatological regimes. PloS One, 11, e0148780. https://doi.org/10.1371/journal.pone.0148780
  43. Sutherland, W. J. (2006). Ecological census techniques: a handbook. Cambridge: Cambridge University Press.
  44. Turner, M. G., Dale, V. H., & Gardner, R. H. (1989). Predicitng across scales: theory development and testing. Landscape Ecology, 3, 245-252. https://doi.org/10.1007/BF00131542
  45. Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104, 20666-20671. https://doi.org/10.1073/pnas.0704119104
  46. Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2004). Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing, 25, 3127-3138. https://doi.org/10.1080/0143116032000160499
  47. White, R. P., Murray, S., Rohweder, M., Prince, S. D., & Thompson, K. M. (2000). Grassland ecosystems. Washington DC: World Resources Institute.
  48. Yim, J., Kleinn, C., Cho, H., & Shin, M. (2010). Integration of digital satellite data and forest inventory data for forest cover mapping in Korea. Forest Science and Technology, 6, 87-96. https://doi.org/10.1080/21580103.2010.9671976

Cited by

  1. Probability distribution of groundcover for runoff prediction in rangeland in the Burnett-Mary Region, Queensland vol.42, pp.2, 2017, https://doi.org/10.1071/rj19082
  2. Estimating fractional green vegetation cover of Mongolian grasslands using digital camera images and MODIS satellite vegetation indices vol.57, pp.1, 2017, https://doi.org/10.1080/15481603.2019.1662166
  3. Remote sensing estimation of the soil erosion cover‐management factor for China's Loess Plateau vol.31, pp.15, 2017, https://doi.org/10.1002/ldr.3577