Effect of Calcium Chloride($CaCl_2$) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii

염화칼슘 처리가 산벚나무 엽의 엽록소형광반응과 광합성기구에 미치는 영향

  • Sung, Joo-Han (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Je, Sun-Mi (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Sun-Hee (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Young-Kul (Department of Forest Conservation, Korea Forest Research Institute)
  • 성주한 (국립산림과학원 산림보전부) ;
  • 제선미 (국립산림과학원 산림보전부) ;
  • 김선희 (국립산림과학원 산림보전부) ;
  • 김영걸 (국립산림과학원 산림보전부)
  • Received : 2010.09.26
  • Accepted : 2010.11.15
  • Published : 2010.12.30

Abstract

There is a little information on the effect of calcium cloride ($CaCl_2$) which is used as deicing salt in Korea on the physiological responses of the street trees. Prunus sargentii is one of the most widespread tree species of street vegetation in Korea. In this study, the effect of $CaCl_2$ on photosynthetic apparatus such as chlorophyll fluorescence image and light response curve of P. sargentii in relation to their leaf and root collar growth responses were investigated. To study the effect of $CaCl_2$ treatment in the early spring, we irrigated twice in rhizosphere of P. sargentii (3-year-old) planted plastic pots with solution of 0.5%, 1.0%, 3.0% $CaCl_2$ concentration before leaf expansion. Results after treatments, total chlorophyll contents and the chlorophyll a/b, photosynthetic rate, quantum yield, dark respiration decreased with increasing $CaCl_2$ concentration. On the contrary, light compensation point increased with increasing $CaCl_2$ concentration. Through the linear regressions of correlation of photosynthetic rate with photosynthetic parameters (quantum yield, dark respiration and light compensation point), we found a significant relationship (p<0.05) between photosynthetic rate and quantum yield and light compensation point except dark respiration. Calcium cloride ($CaCl_2$) induced inhibition of photochemical efficiency ($F_v/F_M$) and non-photochemical quenching (NPQ) were found in treatments of $CaCl_2$, and these reduction rates between control and CaCl2 treatments were drastically showed at 80 days. We suggest that physiological activities are limited from treatment of $CaCl_2$. These reductions of photosynthetic apparatus ability caused eventually the reduction of leaf and diameter at root collar growth.

겨울철 제설제로 사용되고 있는 염화칼슘($CaCl_2$)이 산벚나무(P. sargentii) 가로수에 미치는 영향을 조사하기 위해서, 염화칼슘 농도가 다른 수용액을 2회 처리 후 엽록소형광이미지와 광반응-광합성속도와 같은 광합성기구의 반응, 엽과 근원경 생장을 조사하였다. 3년생 산벚나무를 대상으로 개엽 전에 염화칼슘 0.5%(9 mM), 1.0%(18 mM), 3.0%(54 mM)를 2(1 L)회 뿌리둘레 부위에 처리하였다. 염화칼슘의 처리결과, 염화칼슘의 농도가 짙어짐에 따라 대조구에 비해 염화칼슘처리구의 총엽록소함량과 엽록소 a/b, 광합성속도, 양자수율, 암호흡이 감소하였다. 반면 광보상점은 염화칼슘의 농도가 높아짐에 따라 증가였다. 광합성과 양자수율, 암호흡, 광보상점과의 상관관계에서 양자수율과 광보상점에서 유의성이 나타났다(p<0.05). 한편, 최대형광($F_M$)과 최소형광($F_0$)의 차이인 Fv값의 형광이미지를 통해 빛을 이용하는 능력의 차이가 처리구와 대조구간에 확실하게 나타나는 것을 알 수 있었으며, 광계의 활성(Fv/$F_M$과 비광화학적 소멸(NPQ)의 처리 80일째 값이 모든 처리구에서 대조구에 비해 급격히 감소하였다. 이와 같은 결과로 염화칼슘 수용액에 의해서 산벚나무의 광합성, 동화기관 및 비대생장이 장애를 받고 있음을 알 수 있었다.

Keywords

References

  1. 국가생물종지식정보시스템. 2009. 식물도감. http://www. nature.go.kr
  2. 기상청. 2009. 기상연보. pp. 306.
  3. 도로건설교통부. 2003. 도로제설핸드북. pp. 74.
  4. 산림청. 2009. 가로수 조성.관리 대책. pp. 16.
  5. 김판기, 이용섭, 정동준, 우수영, 성주한, 이은주. 2001. 광환경이 내음성이 서로 다른 세 수종의 광합성 생리에 미치는 영향. 한국임학회지 90(4): 476-487.
  6. 양수진, 우수영, 제선미. 2007. 저농도 오존처리에 따른 다섯 가지 유묘의 기공 변화, 엽록소 함량 및 항산화 효 소 활성. 한국임학회지 96(4): 470-476.
  7. Abreu, M.E. and Munne-Bosch, S. 2008. Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany 64(2): 105-112. https://doi.org/10.1016/j.envexpbot.2007.12.016
  8. Amthor, J.S. 2000. The McCree-de Wit-Penning de Vries- Thornley Respiration Paradigms: 30 Years Later. Annals of Botany 82: 1-20.
  9. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Betula vulgaris. Plant Physiology 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  10. Ashraf, M., Arfan, M., Shahbaz, M., Ahmad, M. and Jamil, A. 2002. Gas exchange characteristics and water relation in some elite skra cultivars under water deficit. Photosynthetica 40(4): 615-620. https://doi.org/10.1023/A:1024368522742
  11. Cannell, M.G.R., Thornley, J.H.M. 2000. Modelling the components of plant respiration: Some guiding principles. Annals of Botany 85: 45-54. https://doi.org/10.1006/anbo.1999.0996
  12. Galmes, J., Ribas-Carbo, M., Medrano, H. and Flexas, J. 2007. Response of leaf respiration to water stress in Mediterranean species with different growth forms. Journal of Arid Environments 68: 206-222. https://doi.org/10.1016/j.jaridenv.2006.05.005
  13. Glynn, C.P., Gillia, A.F. and Oxenham, G. 2003. Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. Journal of Arboriculture 29(2): 61-65.
  14. Gratani, L., Varone, L. and Catoni, R. 2008. Relationship between net photosynthesis and leaf respiration in Mediterranean evergreen species. Photosynthetica 46(4): 567-573. https://doi.org/10.1007/s11099-008-0095-8
  15. Goodrich, B.A., Koski, R.D. and Jacobi, W.R. 2009. Condition of soils and vegetation along roads treated with magnesium chloride for dust suppression. Water, Air, Soil Pollution 198: 165-188. https://doi.org/10.1007/s11270-008-9835-4
  16. Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes. Annual Review Plant Physiology 31: 149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053
  17. Hagemann, M. and Murata., N. 2003. Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiology 131: 1628-1637. https://doi.org/10.1104/pp.102.017277
  18. James, A.R. 2002. Factors affecting $CO_2$ assimilation, leaf injury and growth in salt-stressed durum wheat. Functional plant biology 29(12): 1393-1403. https://doi.org/10.1071/FP02069
  19. Jonsson, T.H. and Magnusdottir, M.L. 2007. Salt-related suppression of bud break in Populus trichocarpa: Cost of inclusion, ion-specific or osmotic effects? Icelandic Agricultural Sciences 20: 35-47.
  20. Lawson, T., Lefebvre, S., Baker, N.R., Morison, J.I.L. and Baines, C.A. 2008. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and $CO_2$. Journal of Experimental Botany 59(13): 3609-3619. https://doi.org/10.1093/jxb/ern211
  21. Lu, C.M., Qiu, N.W., Lu, Q.T., Wang, B.S. and Kuang, T.Y. 2002. Dose salt stress lead to increased susceptibility of photosystem to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science 163: 1063-1068. https://doi.org/10.1016/S0168-9452(02)00281-9
  22. Maricle, B.R., Lee, R.W., Hellquist, C.E. Kirasts, O. and Edwards, G.E. 2007. Effects of salinity on chlorophyll fluorescence and $CO_2$ fixation in C4 estuarine grasses. Photosynthetica 45(3): 433-440. https://doi.org/10.1007/s11099-007-0072-7
  23. Masojidek, J., Torzillo, G., Kopecky, J., Koblzek, M., Nidiaci, L., Komenda, J., Lukavska, A. and Sacchi, A. 2000. Change in chlorophyll fluorescence quenching and pigment composition in the green Chlorococcum sp. Grown under nitrogen deficiency and salinity stress. Journal of Applied Phycology 12: 417-426. https://doi.org/10.1023/A:1008165900780
  24. Muraoka, H., Koizumi, H. and Pearcy, R.W. 2003. Leaf display and photosynthesis of tree seedlings in a cool temperate deciduous broad leaf forest understory. Oecologia 135: 500-509.
  25. Poorter, H., Remkes, C. and Lambers, H. 1990. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant physiology 94: 621-627. https://doi.org/10.1104/pp.94.2.621
  26. Timm, H.C., Stegemann, J. and Kuppers, M. 2002. Photosynthetic induction strongly affects the light conpensation point of net photosynthesis and coincidentally the apparent quantum yield. Trees 16: 47-62. https://doi.org/10.1007/s004680100123
  27. Wang, R., Chen, S., Zhou, X., Shen, X., Deng, L., Zhu, H., Shao, J., Shi, Y., Dai, S., Fritz, E., Huttermann, A., and Polle, A. 2008. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree physiology 28: 947-957. https://doi.org/10.1093/treephys/28.6.947
  28. Zhang, X., Wollenweber, B., Jiang, D., Liu, F. and Zhao, J. 2008. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany 59(4): 839-848. https://doi.org/10.1093/jxb/erm364