• Title/Summary/Keyword: Photosynthetic cultivation

Search Result 103, Processing Time 0.025 seconds

Comparative Analysis of Lighting Intensity, Leaf Temperature, Transpiration Rate, and Vapor Pressure Deficit between the Top and Branching Point of Stem during Growing Period of Paprika Plant (파프리카 생장에 따른 줄기의 정부와 하부 간 광량, 엽온, 증산속도 및 수증기압포차 비교 분석)

  • Seung Mi Woo;Ho Cheol Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1097-1101
    • /
    • 2023
  • As paprika plants grew in a glass greenhouse from November 2022 to March 2023, the amount of light at each plant height, leaf temperature, transpiration rate, and water vapor pressure were measured. Accumulated leaf temperature was higher at the top of the plant than at the bottom. Over time, the leaf temperature measured around 11-13 AM changed from 26.55→23.21→22.80→26.67℃ in the lower part (pL), and from 26.52→24.48→24.55→27.78℃ in the upper part (pAs). And VPD changed from 1.45→0.94→0.74→1.46kPa in pL and from 1.11→0.86→0.71→1.28kPa in pAs. Accordingly, the transpiration rate changed from 4.25→0.17→4.08→0.52mmol·m-2·s-1 in pL, 7.61→2.45→1.94→4.39→0.52mmol·m-2·s-1 in pAs, and from pAs to pL. It was significantly higher than The difference between the lower and upper parts (pL-pAs) was higher in pAs than pL in leaf temperature, light intensity, and transpiration rate, but the water vapor pressure difference was higher in pL. In this way, paprika shows differences in the environment and photosynthetic factors between the upper and lower parts during the cultivation period, so it is judged that this needs to be taken into consideration in future research.

Analysis of Year-round Cultivation Characteristics of Artemisia princeps in Greenhouse and Enhancement of Eupathilin Content by Environmental Stress (강화쑥의 온실 주년 재배 특성 분석 및 환경 처리를 통한 유파틸린 성분 증대)

  • Kang, Woo Hyun;Han, Zeesoo;Lee, Seung Jun;Shin, Jong Hwa;Ahn, Tae In;Lee, Joo Young;Kang, Suk Woo;Jung, Sang Hoon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2018
  • Mugwort (Artemisia princeps) is a medicinal plant that has a substance called euphatilin, which is effective for cell damage and gastritis recovery. The objectives of this study were to investigate the annual growth characteristics of Artemisia princeps in greenhouse and to increase the eupatiline content by environmental stresses. Growth and eupatilin content of the plants were compared after 6 weeks of seedling and subsequent 8 weeks of greenhouse cultivation. Photosynthesis of mugwort plants did not saturate even at a relatively high light intensity of $1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Growth rate of the plants reached its highest at two weeks after transplanting and began to decrease since 8 weeks after transplanting. The plants showed typical characteristics of a perennial herbaceous plant as they were sensitive to seasonal changes. In particular, the plants showed high growth and eupatilin content in spring and summer as vegetative growth periods, but flowering and wintering caused considerable decreases in growth and eupatilin content in fall and winter. Therefore, application of night interruption is essential for year-round cultivationof the plant. Two stresses and a elicitor were treated: drought stresses by stopping irrigation at 5, 6, 7, and 8 days before harvest; salt stresses with nutrient solution concentrations of 2, 4, 6, 8, and $10dS{\cdot}m^{-1}$ by adding sodium chloride at 3 days before harvest; and foliar applications of methyl jasmonates of 12.5, 25, 50, and $100{\mu}M$ at 3 days before harvest. Significant increase in eupatilin content was observed at drought stresses of 7- and 8-days of irrigation stop and foliar application of $25{\mu}M$ methyl jasmonate, while no significant increase observed at salt stresses. From the results, it was confirmed that the environmental treatments can improve the productivity and quality of Artemisia princeps as a phamaceutical raw material.

Growth responses of kelp species Ecklonia cava to different temperatures and nitrogen sources (온도와 질소원 종류에 따른 대형갈조류 감태(Ecklonia cava)의 생장)

  • Choi, Sun Kyeong;Kang, Yun Hee;Park, Sang Rul
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.404-415
    • /
    • 2020
  • We investigated the seasonal variations in growth and physiological responses of the kelp species Ecklonia cava to different nitrogen sources to establish indoor culture conditions for mass production. Ecklonia cava was cultivated for 10 days in 16 combinations of seawater temperatures (15, 17, 21, and 25℃) and different nitrogen sources (control; NH-NH4+ 100 μM; NO-NO3- 100 μM; and NHNO-NH4+ 50 μM+NO3- 50 μM). The growth and growth rate of the blade were affected by temperature. The mean fresh weight and area-based daily growth rate were the highest (5.8±0.5 and 6.6±0.5% day-1, respectively) at 15℃ and the lowest (2.2±0.2 and 3.0±0.3% day-1, respectively) at 25℃. The daily growth rate was the highest in the NH and NO treatments and lowest in the control. The nitrate reductase activity of E. cava varied with water temperature (season). The highest activity was in the control (1.32±0.10 μmol NO2- g-1 dry weight h-1) and the lowest was in the NH treatment (0.25±0.02 μmol NO2- g-1 dry weight h-1). The photosynthetic pigment concentrations reached a maximum value in the NHNO treatment and a minimum value in the control. These results showed that water temperature played an important role in the cultivation of E. cava and that a single supply of NH4+ or NO3- may induce the accelerated growth of E. cava. The growth and physiological responses of E. cava to different nitrogen sources during each season provide valuable information for determining the optimal nitrogen source in E. cava cultivation under indoor conditions.

Effect of Shading Methods on Growth and Fruit Quality of Paprika in Summer Season (파프리카 여름재배시 차광방법이 생육과 과실특성에 미치는 영향)

  • Ha, Jun Bong;Lim, Chae Shin;Kang, Hyo Yong;Kang, Yang Su;Hwang, Seung Jae;Mun, Hyung Su;An, Chul Geon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2012
  • This study was carried out to investigate the effect of two shading methods, shading agent spray on the glasshouse and internal shading screen treatment, on the growth and fruit quality of paprika (Capsicum annuum L. 'Cupra' and 'Coletti') in summer season cultivation. In the shading agent treatment, a commercial shading agent diluted with water at a ratio of 1 : 4 was sprayed on the roof of a glasshouse. In the internal shading screen treatment, a 10~20% shaded screen was used during the day time when the sun radiation was greater than $700W{\cdot}m^{-2}$. Compared to the unshaded control, photosynthetic photon flux density (PPFD) decreased in the greenhouse in the shading agent (SA) and shading screen (SS) treatments by 20% and 30%, respectively. Lower air temperatures and higher relative humidities were observed in the SA than in both the control and the SS treatment. Time to reach the break point of humidity deficit $8g{\cdot}m^{-3}$ was 2 hours late in the SA than in both the control and the SS treatment. Compared to control, both the SA and the SS treatments showed lower instantaneous temperatures of leaf, fruit, and flower by $2^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively. There were no differences in number of branches, stem diameter, and leaf size among treatments although both shading treatments promoted plant height in both cultivars. Botrytis infection ratio declined with the SA treatment by 14.7% in 'Cupra' and 22.1% in 'Coletti' as compared to that in the control. Shading increased fruit size in both cultivars, whereas no differences were observed in the number of locules and thickness of fruit tissue among treatments. Shading treatment increased mean fruit weight by a range of 10 to 15 g per fruit, while it decreased soluble solids contents as compared to that in the control. Similar Hunter values were observed among treatments, while fruit firmness increased slightly in shading treatments. Compared to the control, shading treatments improved marketable fruits by 11.7~22.6% and increased the number of fruits per plant by 4~9.2 in both 'Cupra' and 'Coletti'. The results of this study indicate that shading agent application on the roof of glasshouse would be one of the most effective options to reduce heat stress imposed on the paprika crop in summer cultivation, resulting in improved crop growth and fruit yield.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Growth Characteristics of Tomatoes Grafted with Different Rootstocks Grown in Soil during Winter Season (대목 종류에 따른 저온기 토경재배에서의 토마토 생육 특성 분석)

  • Lee, Hyewon;Lee, Jun Gu;Cho, Myeong Cheoul;Hwang, Indeok;Hong, Kue Hyon;Kwon, Deok Ho;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.194-203
    • /
    • 2022
  • Cultivation of tomatoes in Korea grown in soil covers 89% of the total area for tomato cultivation. Tomatoes grown in soil often encounter various environment stresses including not only salt stress and soil-borne diseases but also cold stress in the winter season. This study was conducted to comparatively analyze the performance of rootstocks with cold stress by measuring the growth, yield, and photosynthetic efficiency in tomatoes grown in soil. The rootstocks were used 'Powerguard', 'IT173773', and '20LM' for the domestic rootstock cultivars and 'B-blocking' for a control cultivar. The tomato cultivar 'Red250' was used as the scion and the non-grafted tomatoes. Stem diameter, flowering position, leaf length, and leaf width were investigated for the growth parameters. The stem diameter of the non-grafted tomatoes decreased by 15% compared to the grafted tomatoes at 80 days after transplanting when exposed to low temperatures of 9-14℃ for 14 days. The leaf length and width of the non-grafted tomatoes were the lowest with 42.4 cm and 41.8 cm at 80 days after transplanting. The total yield per plant was the highest in tomato plants grafted on 'Powerguard' with 1,615 g and lowest in non-grafted tomatoes with 1,299 g. As the result of measuring the chlorophyll fluorescence parameters, PIABS and DI0/RC, which mean the performance index and dissipated energy flux, 'Powerguard' was the highest with 3.73 in PIABS and the lowest with 0.34 in DI0/RC, whereas non-grafted tomatoes was the lowest with 2.62 in PIABS and the highest with 0.41 in DI0/RC at 80 days after transplanting. The stem diameter has positive correlation with PIABS, while it has negative correlation with DI0/RC. The results indicate that can be analyzed by chlorophyll fluorescence parameters can be used for analyzing the differences in the growth of tomato plants grafted on different rootstocks when exposed to cold stress.

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

Drought Resistance of Several Soybean Cultivars (주요대두품종(主要大豆品種)의 내건성(耐乾性)에 관(關)한 연구(硏究))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.36-46
    • /
    • 1988
  • Twelve soybean cultivars were cultivated in the 1/2,000a. Wagner pots with irrigation and without irrigation for 30 days after flowering, and the differences of plant growth and bean yield among cultivars were compared. And to investigate the varietal differences in the rate of photosynthesis under different relative humidity, 6soybean cultivars were cultivated in 1/2,000a. Wagner pot and the rate of photosynthesis of each soybean cultivar at flowering time was measured under the relative humidity of 80, 70, 60, 50 and 40%. The results obtained are summarized as follows; 1. The days to maturity of the soybean cultivars were shortened by non-irrigation treatment. The response of the maturing dates to non-irrigation was significantly different among the soybean cultivars. The days for maturing of Paldal, Danyeob and Eundaedu were delayed 2 days but those of Jangbaek and Tamahomare were delayed about 7 to 8 days under non-irrigation treatment. 2. The stem length, stem diameter, number of nodes of the mainstem, number of branches and number of branch nodes of all soybean cultivars were decreased by non-irrigation treatment. The number of branches and the number of branch nodes were especially severely influenced by non-irrigation treatment. 3. The number of pods per plant and the number of perfect pods was significantly reduced by non-irrigation treatment but the number of imperfect pods was increased. The non-irrigation treatment reduced the number of pods per plant by 58.0% and the ratio of the number of the perfect pods per plant by 46.6% relative to the ordinary cultivation with irrigation. 4. The grain yield of all cultivars was significantly reduced by the non-irrigation treatment, and average grain yield of soybean cultivars cultivated under non-irrigation treatment was 35.9% of that of soybean cultivars cultivated with irrigation. The influence of non-irrigation treatment was lowest in Paldal and significantly high in Tamahomare and Jangbaek. 5. The rate of photosynthesis of soybean leaves was significantly different among cultivars and was also influenced by relative humidity. Ratio of the photosynthetic amount of soybean leaves at 40% RH to the maximum photosynthesis at optimal humidity was 97.2% in Paldal, 96.4% in Danyeob and 88.8% in Baekun. 6. At 40% relative air humidity, highly significant correlations were found among the photosynthesis rate, the amount of transpiration and the respiration rate.

  • PDF

Study on Environment-friendly Rice Production System by Use of Effective Microorganism (미생물제제를 이용한 친환경 벼 생산체계에 관한 연구 -EM 등 친환경농자재 처리수준이 벼 생육 및 수량에 미치는 영향-)

  • Yoon, Seong-Tak;Park, Sang-Hun;Kim, Young-Whi
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.2
    • /
    • pp.207-218
    • /
    • 2007
  • Coming with the well-being era, consumer's demand for safe agricultural products is increasing. So, it is urgent to develop an environment-friendly rice production system. Accordingly, this study was conducted to develop an environment-friendly rice production system by using Amo known as EM(effective microorganisms) and also known as being effective in environment-friendly rice production with several other environment-friendly agricultural materials. The highest number of tillers per hill was obtained from level 2 of EM treatment (48.8 tillers per hill), while the lowest was obtained from the control plot (41.0 tillers per hill). Leaf area per hill at heading stage was the highest in level 3 of EM treatment $(3228.5cm^2)$, while control was the lowest leaf area $(2264.7cm^2)$, which is 70.2% compared to the level 3 of EM treatment. The highest effective tillers was obtained from the control (63.7%), while the lowest effective tillers was obtained from the level 3 of EM treatment (55.4%), which were treated with higher amounts of environment-friendly agricultural materials. Level 3 of EM treatment showed the highest number of panicles per hill (20.9), while the control showed the lowest number of panicles per hill (19.3). In the spikelets per panicle, level 2 of EM treatment showed the highest number of spikelets (85.2), while the control showed the lowest number of spikelets (81.9) and there was a statistically significant difference among the three levels and control. The highest grain filling ratio was obtained from the control (85.0%), while level 3 of EM treatment was the lowest grain filling ratio and there were no great difference between treatment levels. Regarding the 1000 grain weight, the control showed the highest 1000 grain weight (21.7g), which is heavier by about 1g compared to treatment levels. Level 2 of EM treatment showed the highest rough rice yield per 10a, while level 3 of EM treatment was the lowest and they also showed a statistically significant difference among treatment levels.

  • PDF

An Assessment of Primary Productivity Determined by Stable Isotopes and Diving-PAM in the Pyropia Sea Farms of the Manho (Jindo-Haenam) Region on the Southwestern Coast of the Korean Peninsula (안정동위원소 및 Diving-PAM을 이용한 남서해안 만호해역 (진도-해남) 김 양식장에서의 일차 생산력)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Hyung Chul;Hong, Sokjin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.18-29
    • /
    • 2016
  • The effects of water temperature, salinity, water column nutrient contents, and phytoplankton primary productivity on pigment composition and concentration, as well as primary productivity of Pyropia yezoensis Ueda purple lavers were studied at the primary cultivation areas in the Manho (Jindo-Haenam) region on the southwestern coast of Korea in March 2014. The water temperature was $9.1{\sim}9.6^{\circ}C$, salinity was 32.5~33.1, and transparency was 0.7~1.5 m. The shallow euphotic depth resulted from the high turbidity. Water column dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and silicate concentrations were $3.59{\sim}5.73{\mu}M$, $0.16{\sim}0.41{\mu}M$, and $12.41{\sim}13.94{\mu}M$, respectively. Chlorophyll a (Chl a) concentration was $0.51{\sim}1.25{\mu}g\;L^{-1}$. Nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 58% of the total Chl a concentration. Fucoxanthin was the dominant photosynthetic pigment at all sites. Microplankton ($20{\sim}200{\mu}m$ size class) accounted for 64% of the total fucoxanthin concentration. The primary productivity of phytoplankton was $57.72{\pm}4.67(51.05{\sim}66.71)mg\;C\;m^{-2}d^{-1}$. The nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 77% of the total phytoplankton primary productivity. The calculated phytoplankton primary productivity was $11,337kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was $1,926{\pm}192(1,102{\sim}2,597)mg\;C\:m^{-2}d^{-1}$, i.e., calculated as $39,295kg\;C\;d^{-1}$. The total primary productivity of phytoplankton and Pyropia blades was $50,632kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was 3.5 times greater than that of phytoplankton in the Manho region on the southwestern coast of Korea.