DOI QR코드

DOI QR Code

Growth Characteristics of Tomatoes Grafted with Different Rootstocks Grown in Soil during Winter Season

대목 종류에 따른 저온기 토경재배에서의 토마토 생육 특성 분석

  • Lee, Hyewon (Department of Vegetable crops, Korea National University of Agriculture and Fisheries) ;
  • Lee, Jun Gu (Department of Horticulture, University of Agriculture & Life Sciences, Jeonbuk National University) ;
  • Cho, Myeong Cheoul (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Hwang, Indeok (R&D Center, Bunongseed Co., Ltd.) ;
  • Hong, Kue Hyon (Department of Vegetable crops, Korea National University of Agriculture and Fisheries) ;
  • Kwon, Deok Ho (Department of Vegetable crops, Korea National University of Agriculture and Fisheries) ;
  • Ahn, Yul Kyun (Department of Vegetable crops, Korea National University of Agriculture and Fisheries)
  • 이혜원 (국립한국농수산대학교 채소학과) ;
  • 이준구 (전북대학교 농업생명과학대학 원예학과) ;
  • 조명철 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 황인덕 (부농종묘 육종연구소) ;
  • 홍규현 (국립한국농수산대학교 채소학과) ;
  • 권덕호 (국립한국농수산대학교 채소학과) ;
  • 안율균 (국립한국농수산대학교 채소학과)
  • Received : 2022.06.23
  • Accepted : 2022.07.15
  • Published : 2022.07.31

Abstract

Cultivation of tomatoes in Korea grown in soil covers 89% of the total area for tomato cultivation. Tomatoes grown in soil often encounter various environment stresses including not only salt stress and soil-borne diseases but also cold stress in the winter season. This study was conducted to comparatively analyze the performance of rootstocks with cold stress by measuring the growth, yield, and photosynthetic efficiency in tomatoes grown in soil. The rootstocks were used 'Powerguard', 'IT173773', and '20LM' for the domestic rootstock cultivars and 'B-blocking' for a control cultivar. The tomato cultivar 'Red250' was used as the scion and the non-grafted tomatoes. Stem diameter, flowering position, leaf length, and leaf width were investigated for the growth parameters. The stem diameter of the non-grafted tomatoes decreased by 15% compared to the grafted tomatoes at 80 days after transplanting when exposed to low temperatures of 9-14℃ for 14 days. The leaf length and width of the non-grafted tomatoes were the lowest with 42.4 cm and 41.8 cm at 80 days after transplanting. The total yield per plant was the highest in tomato plants grafted on 'Powerguard' with 1,615 g and lowest in non-grafted tomatoes with 1,299 g. As the result of measuring the chlorophyll fluorescence parameters, PIABS and DI0/RC, which mean the performance index and dissipated energy flux, 'Powerguard' was the highest with 3.73 in PIABS and the lowest with 0.34 in DI0/RC, whereas non-grafted tomatoes was the lowest with 2.62 in PIABS and the highest with 0.41 in DI0/RC at 80 days after transplanting. The stem diameter has positive correlation with PIABS, while it has negative correlation with DI0/RC. The results indicate that can be analyzed by chlorophyll fluorescence parameters can be used for analyzing the differences in the growth of tomato plants grafted on different rootstocks when exposed to cold stress.

국내 토마토 토경재배 면적은 전체 재배면적의 89%로 높은 비율을 차지하고 있다. 토경재배 토마토는 염류장해와 토양전염성 병원균 피해에 취약할 뿐만 아니라 겨울철 저온 피해를 입기 쉽기 때문에 토마토 접목묘를 사용하는 것이 좋다. 본 연구는 저온기 토경재배에서의 토마토 대목의 종류에 따라 나타나는 생육, 수량 및 광합성 효율의 차이를 비교 분석하고자 수행하였다. 대목의 종류는 4가지로 국내 개발 계통 및 품종 'Powergaurd', 'IT173773', '20LM'과 대조 품종 'B-blocking'을 사용하였다. 접수와 비접목 처리구로 완숙토마토 품종 'Red250'을 사용하였다. 작물이 14일간 9-14℃의 저온에 노출된 시기인 정식 후 80일에 비접목 처리구의 경경은 10.1mm로 접목 처리구에 비해 15% 낮았고 엽장과 엽폭은 42.4cm와 41.8cm로 감소하였다. 주당 총 수량은 'Powerguard'가 1,615g으로 높았고 비접목 처리구가 1,299g으로 낮았다. 엽록소형광 지수 중 작물의 전반적인 활력도를 나타내는 PIABS와 광합성에 사용되지 못한 빛에너지가 열로 소실됨을 뜻하는 지수인 DI0/RC를 측정한 결과, 정식 후 80일에 접목 처리구 'Powerguard'의 PIABS는 3.73으로 높았고 DI0/RC는 0.34로 낮은 반면, 비접목 처리구의 PIABS는 2.62로 낮았고 DI0/RC는 0.41로 높았다. 경경은 PIABS와 정의 상관관계를 나타낸 반면, DI0/RC와는 부의 상관관계를 나타내어 다양한 엽록소형광 지수를 통해 저온기 대목 종류에 따른 접수의 생육차이를 분석할 수 있는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청공동연구사업(과제번호 PJ013561032021)의 지원에 의해 수행되었음. 본 논문은 이혜원의 2022년도 석사 학위논문의 데이터를 활용하여 재구성하였음.

References

  1. Aazami M.A., M. Asghari-Aruq, M.B. Hassanpouraghdam, S. Ercisli, M. Baron, and J. Sochor 2021, Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants 10:1877. doi:10.3390/plants10091877
  2. Ajigboye O.O., L. Bousquet, E.H. Murchie, and R.V. Ray 2016, Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Funct Plant Biol 43:356-369. doi:10.1071/FP15280
  3. Baghbani F., R. Lotfi, S. Moharramnejad, A. Bandehagh, M. Roostaei, A. Rastogi, and H.M. Kalaji 2019, Impact of Fusarium verticillioides on chlorophyll fluorescence parameters of two maize lines. Eur J Plant Pathol 154:337-346. doi:10.1007/s10658-018-01659-x
  4. Baker N.R., and E. Rosenqvist 2004, Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. doi:10.1093/jxb/erh196
  5. Bristow S.T., L.H. Hernandez-Espinoza, M. Bonarota, and F.H. Barrios-Masias 2021, Tomato rootstocks mediate plant-water relations and leaf nutrient profiles of a common scion under suboptimal soil temperatures. Front Plant Sci 11:618488. doi:10.3389/fpls.2020.618488
  6. Bussotti F., R. Desotgiu, C. Cascio, M. Pollastrini, E. Gravano, G. Gerosa, R. Marzuoli, C. Nali, G. Lorenzini, E. Salvatori, F. Manes, M. Schaub, and R.J. Strasser 2011, Ozone stress in woody plants assessed with chlorophyll a fluorescence: A critical reassessment of existing data. Environ Exp Bot 73:19-30. doi:10.1016/j.envexpbot.2010.10.022
  7. Force L., C. Critchley, and J.J.S. van Rensen 2003, New fluorescence parameters for monitoring photosynthesis in plants. Photosynth Res 78:17-33. doi:10.1023/A:1026012116709
  8. Galvez A., A. Albacete, C. Martinez-Andujar, F.M. Amor, and J. Lopez-Marin 2021, Contrasting rootstock-mediated growth and yield responses in salinized pepper plants (Capsicum annuum L.) are associated with change in the hormonal balance. Int J Mol Sci 22:3297. doi:10.3390/ijms22073297
  9. Govindjee 1995, Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131-160. https://doi.org/10.1071/PP9950131
  10. Harel D., H. Fadida, A. Slepoy, S. Gantz, and K. Shilo 2014, The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 4:167-177. doi:10.3390/agronomy4010167
  11. Healey J.F. 1993, Statics, a tool for social research. Wadsworth Incorporated, Belmont, CA, USA.
  12. Kalaji H.M., A. Jajoo, A. Oukarroum, M. Brestic, M. Zivcak, I.A. Samborska, M.D. Cetner, I. Lukasik, V. Goltsev, and R.J. Ladle 2016, Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. doi:10.1007/s11738-016-2113-y
  13. Kalaji H.M., Govindjee, K. Bosa, J. Koscielniak, and K. Zuk-Golaszewska 2011, Effect of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64-72. doi:10.1016/j.envexpbot.2010.10.009
  14. Kim S.E., S.Y. Sim, S.D. Lee, and Y.S. Kim 2010, Appropriate root-zone temperature control in perlite bag culture of tomato during winter season. Korean J Hortic Sci Technol 28:783-789. (in Korean)
  15. Korean Statistical Information Service (KOSIS) 2022, MAFRA, https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114018_005&conn_path=I2, Accessed 10 June 2022. (in Korean)
  16. Latifah E., A. Krismawati, M. Saeri, Z. Arifin, B. Warsiati, D. Setyorini, P.E.R. Prahardini, H. Subagio, D. Sihombing, S.S Antarlina, E. Widaryanto, Ariffin, and M.D. Maghfoer 2021, Analysis of plant growth and yield in varieties of tomato (Solanum lycopersicum L.) grafted onto different eggplant rootstocks. Hindawi Int J Agron 2021:1-11. doi:10.1155/2021/6630382
  17. Lee H., J.G. Lee, K.H. Hong, D.H. Kwon, M.C. Cho, I. Hwang, and Y.K. Ahn 2021, Improving growth and yield in cherry tomato by using rootstocks. J Bio-Env Con 30:196-205. (in Korean) doi:10.12791/KSBEC.2021.30.3.196
  18. Lee H., K.H. Hong, D.H. Kwon, M.C. Cho, J.G. Lee, I. Hwang, and Y.K. Ahn 2020, Changes of growth and yield by using rootstocks in tomato. Protected Hort Plant Fac 29:456-463. (in Korean) doi:10.12791/KSBEC.2020.29.4.456
  19. Lee J.B., S.C. Koh, B.Y. Moon, I.H. Park, H.B. Park, and H.S. Chun 2016, Plant physiology (Korean edition). Lifescience, Seoul, Korea, pp 126. (in Korean)
  20. Lee J.M., and M. Oda 2002, Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28:61-124. doi:10.1002/9780470650851.ch2
  21. Leonardi C., and F. Giuffrida 2006, Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Eur J Hortic Sci 71:97-101.
  22. Ntatsi G., D. Savvas, V. Papasotiropoulos, A. Katsileros, R.M. Zrenner, D.K. Hincha, E. Zuther, and D. Schwarz 2017, Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants. Front Plant Sci 8:911. doi:10.3389/fpls.2017.00911
  23. Oh S., and S.C. Koh 2005, Analysis of O-J-I-P transients from four subtropical plant species for screening of stress indicators under low temperature. J Environ Sci Int 14:389-395. (in Korean) doi:10.5322/JES.2005.14.4.389
  24. Ploeg D.V., and E. Heuvelink 2005, Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652-659. doi:10.1080/14620316.2005.11511994
  25. Rural Development Administration (RDA) 2018, Tomato. Rural Development Administration, Jeonju, Korea, pp 74-144. (in Korean)
  26. Schwarz D., Y. Rouphael, G. Colla, and J.H. Venema 2010, Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci Hortic 127:162-171. doi:10.1016/j.scienta.2010.09.016
  27. Sharma V., P. Kumar, P. Sharma, N.D. Negi, A. Singh, P.K. Sharma, N.S. Dhillon, and B. Vats 2019, Rootstock and scion compatibility studies in tomato under protected conditions. Int J Curr Microbiol App Sci 8:1188-1197. doi:10.20546/ijcmas.2019.805.135
  28. Soe D.W., Z.Z. Win, A.A. Thwe, and K.T. Myint 2018, Effect of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). J Agric Res 5:30-38
  29. Stanghellini C., B.V. Ooster, and E. Heuvelink 2019, Greenhouse horticulture technology for optimal crop production. Wageningen Academic Publishers, Wageningen, The Netherlands. doi:10.3920/978-90-8686-879-7
  30. Stradiot P., and P. Battistel 2003, Improved plant management with localized crop heating and advice on distance in the Mediterranean climate. Acta Hortic 614:461-467. doi:10.17660/ActaHortic.2003.614.69
  31. Suchoff D.H., P. Perkins-Veazie, H.W. Sederoff, J.R. Schultheis, M.D. Kleinhenz, F.J. Louws, and C.C. Gunter 2018, Grafting the indeterminate tomato cultivar Moneymaker onto multifort rootstock improves cold tolerance. HortScience 53:1610-1617. doi:10.21273/HORTSCI13311-18
  32. Thach L.B., A. Shapcott, S. Schmidt, and C. Critchley 2007, The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress response. Photosynth Res 94:423-436. doi:10.1007/s11120-007-9207-8
  33. Thimijan R.W., and R.D. Heins 1983, Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18:818-822. https://doi.org/10.21273/HORTSCI.18.6.818
  34. Thwe A., and P. Kasemsap 2014, Quantification of OJIP fluorescence transient in tomato plants under acute ozone stress. Kasetsart J - Nat Sci 48:665-675.
  35. Yang E.Y., S.N. Rajametov, M.C. Cho, H.B. Jeong, and W.B. Chae 2021, Factors affecting tolerance to low night temperature differ by fruit types in tomato. Agriculture 11:681. doi:10.3390/agriculture11070681
  36. Yoo S.Y., Y.H. Lee, S.H. Park, K. Choi, J.Y. Park, A.R. Kim, S.M. Hwang, M.J. Lee, T.S. Ko, and T.W. Kim 2013, Photochemical response analysis on drought stress for red pepper (Capsicum annuum L.). Korean J Soil Sci Fert 46:659-664. (in Korean) doi:10.7745/KJSSF.2013.46.6.659
  37. Zhang L., G. Zhang, H. Li, and G. Sun 2014, Eco-physiological responses of Scirpus planiculmis to different water-salt conditions in Momoge Wetland. Pol J Envion Stud 23:1813-1820.
  38. Zivcak M., M. Brestic, K. Olsovska, and P. Slamka 2008, Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ 54:133-139. doi:10.17221/392-PSE